File size: 15,055 Bytes
395d300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# Copyright (c) OpenMMLab. All rights reserved.
import datetime
import itertools
import os.path as osp
import tempfile
from collections import OrderedDict
from typing import Dict, List, Optional, Sequence, Union

import numpy as np
import torch
from mmengine.evaluator import BaseMetric
from mmengine.fileio import FileClient, dump, load
from mmengine.logging import MMLogger
from terminaltables import AsciiTable

from mmdet.datasets.api_wrappers import COCO, COCOeval
from mmdet.registry import METRICS
from mmdet.structures.mask import encode_mask_results
# from ..functional import eval_recalls
from mmdet.evaluation.metrics import CocoMetric


@METRICS.register_module()
class AnimeMangaMetric(CocoMetric):

    def __init__(self,
                 manga109_annfile=None,
                 animeins_annfile=None,
                 ann_file: Optional[str] = None,
                 metric: Union[str, List[str]] = 'bbox',
                 classwise: bool = False,
                 proposal_nums: Sequence[int] = (100, 300, 1000),
                 iou_thrs: Optional[Union[float, Sequence[float]]] = None,
                 metric_items: Optional[Sequence[str]] = None,
                 format_only: bool = False,
                 outfile_prefix: Optional[str] = None,
                 file_client_args: dict = dict(backend='disk'),
                 collect_device: str = 'cpu',
                 prefix: Optional[str] = None,
                 sort_categories: bool = False) -> None:

        super().__init__(ann_file, metric, classwise, proposal_nums, iou_thrs, metric_items, format_only, outfile_prefix, file_client_args, collect_device, prefix, sort_categories)
        
        self.manga109_img_ids = set()
        if manga109_annfile is not None:
            with self.file_client.get_local_path(manga109_annfile) as local_path:
                self._manga109_coco_api = COCO(local_path)
                if sort_categories:
                    # 'categories' list in objects365_train.json and
                    # objects365_val.json is inconsistent, need sort
                    # list(or dict) before get cat_ids.
                    cats = self._manga109_coco_api.cats
                    sorted_cats = {i: cats[i] for i in sorted(cats)}
                    self._manga109_coco_api.cats = sorted_cats
                    categories = self._manga109_coco_api.dataset['categories']
                    sorted_categories = sorted(
                        categories, key=lambda i: i['id'])
                    self._manga109_coco_api.dataset['categories'] = sorted_categories
                self.manga109_img_ids = set(self._manga109_coco_api.get_img_ids())
        else:
            self._manga109_coco_api = None

        self.animeins_img_ids = set()
        if animeins_annfile is not None:
            with self.file_client.get_local_path(animeins_annfile) as local_path:
                self._animeins_coco_api = COCO(local_path)
                if sort_categories:
                    # 'categories' list in objects365_train.json and
                    # objects365_val.json is inconsistent, need sort
                    # list(or dict) before get cat_ids.
                    cats = self._animeins_coco_api.cats
                    sorted_cats = {i: cats[i] for i in sorted(cats)}
                    self._animeins_coco_api.cats = sorted_cats
                    categories = self._animeins_coco_api.dataset['categories']
                    sorted_categories = sorted(
                        categories, key=lambda i: i['id'])
                    self._animeins_coco_api.dataset['categories'] = sorted_categories
            self.animeins_img_ids = set(self._animeins_coco_api.get_img_ids())
        else:
            self._animeins_coco_api = None

        if self._animeins_coco_api is not None:
            self._coco_api = self._animeins_coco_api
        else:
            self._coco_api = self._manga109_coco_api


    def compute_metrics(self, results: list) -> Dict[str, float]:

        # split gt and prediction list
        gts, preds = zip(*results)

        manga109_gts, animeins_gts = [], []
        manga109_preds, animeins_preds = [], []
        for gt, pred in zip(gts, preds):
            if gt['img_id'] in self.manga109_img_ids:
                manga109_gts.append(gt)
                manga109_preds.append(pred)
            else:
                animeins_gts.append(gt)
                animeins_preds.append(pred)

        tmp_dir = None
        if self.outfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            outfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            outfile_prefix = self.outfile_prefix

        eval_results = OrderedDict()

        if len(manga109_gts) > 0:
            metrics = []
            for m in self.metrics:
                if m != 'segm':
                    metrics.append(m)

            self.cat_ids = self._manga109_coco_api.get_cat_ids(cat_names=self.dataset_meta['classes'])
            self.img_ids = self._manga109_coco_api.get_img_ids()
            rst = self._compute_metrics(metrics, self._manga109_coco_api, manga109_preds, outfile_prefix, tmp_dir)
            for key, item in rst.items():
                eval_results['manga109_'+key] = item

        if len(animeins_gts) > 0:
            self.cat_ids = self._animeins_coco_api.get_cat_ids(cat_names=self.dataset_meta['classes'])
            self.img_ids = self._animeins_coco_api.get_img_ids()
            rst = self._compute_metrics(self.metrics, self._animeins_coco_api, animeins_preds, outfile_prefix, tmp_dir)
            for key, item in rst.items():
                eval_results['animeins_'+key] = item

        return eval_results

    def results2json(self, results: Sequence[dict],
                     outfile_prefix: str) -> dict:
        """Dump the detection results to a COCO style json file.

        There are 3 types of results: proposals, bbox predictions, mask
        predictions, and they have different data types. This method will
        automatically recognize the type, and dump them to json files.

        Args:
            results (Sequence[dict]): Testing results of the
                dataset.
            outfile_prefix (str): The filename prefix of the json files. If the
                prefix is "somepath/xxx", the json files will be named
                "somepath/xxx.bbox.json", "somepath/xxx.segm.json",
                "somepath/xxx.proposal.json".

        Returns:
            dict: Possible keys are "bbox", "segm", "proposal", and
            values are corresponding filenames.
        """
        bbox_json_results = []
        segm_json_results = [] if 'masks' in results[0] else None
        for idx, result in enumerate(results):
            image_id = result.get('img_id', idx)
            labels = result['labels']
            bboxes = result['bboxes']
            scores = result['scores']
            # bbox results
            for i, label in enumerate(labels):
                data = dict()
                data['image_id'] = image_id
                data['bbox'] = self.xyxy2xywh(bboxes[i])
                data['score'] = float(scores[i])
                data['category_id'] = self.cat_ids[label]
                bbox_json_results.append(data)

            if segm_json_results is None:
                continue

            # segm results
            masks = result['masks']
            mask_scores = result.get('mask_scores', scores)
            for i, label in enumerate(labels):
                data = dict()
                data['image_id'] = image_id
                data['bbox'] = self.xyxy2xywh(bboxes[i])
                data['score'] = float(mask_scores[i])
                data['category_id'] = self.cat_ids[label]
                if isinstance(masks[i]['counts'], bytes):
                    masks[i]['counts'] = masks[i]['counts'].decode()
                data['segmentation'] = masks[i]
                segm_json_results.append(data)

        logger: MMLogger = MMLogger.get_current_instance()
        logger.info('dumping predictions ... ')
        result_files = dict()
        result_files['bbox'] = f'{outfile_prefix}.bbox.json'
        result_files['proposal'] = f'{outfile_prefix}.bbox.json'
        dump(bbox_json_results, result_files['bbox'])

        if segm_json_results is not None:
            result_files['segm'] = f'{outfile_prefix}.segm.json'
            dump(segm_json_results, result_files['segm'])

        return result_files

    def _compute_metrics(self, metrics, tgt_api, preds, outfile_prefix, tmp_dir):
        logger: MMLogger = MMLogger.get_current_instance()
        
        result_files = self.results2json(preds, outfile_prefix)

        eval_results = OrderedDict()
        if self.format_only:
            logger.info('results are saved in '
                        f'{osp.dirname(outfile_prefix)}')
            return eval_results

        for metric in metrics:
            logger.info(f'Evaluating {metric}...')

            # TODO: May refactor fast_eval_recall to an independent metric?
            # fast eval recall
            if metric == 'proposal_fast':
                ar = self.fast_eval_recall(
                    preds, self.proposal_nums, self.iou_thrs, logger=logger)
                log_msg = []
                for i, num in enumerate(self.proposal_nums):
                    eval_results[f'AR@{num}'] = ar[i]
                    log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}')
                log_msg = ''.join(log_msg)
                logger.info(log_msg)
                continue

            # evaluate proposal, bbox and segm
            iou_type = 'bbox' if metric == 'proposal' else metric
            if metric not in result_files:
                raise KeyError(f'{metric} is not in results')
            try:
                predictions = load(result_files[metric])
                if iou_type == 'segm':
                    # Refer to https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/coco.py#L331  # noqa
                    # When evaluating mask AP, if the results contain bbox,
                    # cocoapi will use the box area instead of the mask area
                    # for calculating the instance area. Though the overall AP
                    # is not affected, this leads to different
                    # small/medium/large mask AP results.
                    for x in predictions:
                        x.pop('bbox')
                coco_dt = tgt_api.loadRes(predictions)

            except IndexError:
                logger.error(
                    'The testing results of the whole dataset is empty.')
                break

            coco_eval = COCOeval(tgt_api, coco_dt, iou_type)

            coco_eval.params.catIds = self.cat_ids
            coco_eval.params.imgIds = self.img_ids
            coco_eval.params.maxDets = list(self.proposal_nums)
            coco_eval.params.iouThrs = self.iou_thrs

            # mapping of cocoEval.stats
            coco_metric_names = {
                'mAP': 0,
                'mAP_50': 1,
                'mAP_75': 2,
                'mAP_s': 3,
                'mAP_m': 4,
                'mAP_l': 5,
                'AR@100': 6,
                'AR@300': 7,
                'AR@1000': 8,
                'AR_s@1000': 9,
                'AR_m@1000': 10,
                'AR_l@1000': 11
            }
            metric_items = self.metric_items
            if metric_items is not None:
                for metric_item in metric_items:
                    if metric_item not in coco_metric_names:
                        raise KeyError(
                            f'metric item "{metric_item}" is not supported')

            if metric == 'proposal':
                coco_eval.params.useCats = 0
                coco_eval.evaluate()
                coco_eval.accumulate()
                coco_eval.summarize()
                if metric_items is None:
                    metric_items = [
                        'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000',
                        'AR_m@1000', 'AR_l@1000'
                    ]

                for item in metric_items:
                    val = float(
                        f'{coco_eval.stats[coco_metric_names[item]]:.3f}')
                    eval_results[item] = val
            else:
                coco_eval.evaluate()
                coco_eval.accumulate()
                coco_eval.summarize()
                if self.classwise:  # Compute per-category AP
                    # Compute per-category AP
                    # from https://github.com/facebookresearch/detectron2/
                    precisions = coco_eval.eval['precision']
                    # precision: (iou, recall, cls, area range, max dets)
                    assert len(self.cat_ids) == precisions.shape[2]

                    results_per_category = []
                    for idx, cat_id in enumerate(self.cat_ids):
                        # area range index 0: all area ranges
                        # max dets index -1: typically 100 per image
                        nm = tgt_api.loadCats(cat_id)[0]
                        precision = precisions[:, :, idx, 0, -1]
                        precision = precision[precision > -1]
                        if precision.size:
                            ap = np.mean(precision)
                        else:
                            ap = float('nan')
                        results_per_category.append(
                            (f'{nm["name"]}', f'{round(ap, 3)}'))
                        eval_results[f'{nm["name"]}_precision'] = round(ap, 3)

                    num_columns = min(6, len(results_per_category) * 2)
                    results_flatten = list(
                        itertools.chain(*results_per_category))
                    headers = ['category', 'AP'] * (num_columns // 2)
                    results_2d = itertools.zip_longest(*[
                        results_flatten[i::num_columns]
                        for i in range(num_columns)
                    ])
                    table_data = [headers]
                    table_data += [result for result in results_2d]
                    table = AsciiTable(table_data)
                    logger.info('\n' + table.table)

                if metric_items is None:
                    metric_items = [
                        'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l'
                    ]

                for metric_item in metric_items:
                    key = f'{metric}_{metric_item}'
                    val = coco_eval.stats[coco_metric_names[metric_item]]
                    eval_results[key] = float(f'{round(val, 3)}')

                ap = coco_eval.stats[:6]
                logger.info(f'{metric}_mAP_copypaste: {ap[0]:.3f} '
                            f'{ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} '
                            f'{ap[4]:.3f} {ap[5]:.3f}')

        if tmp_dir is not None:
            tmp_dir.cleanup()
        return eval_results