Spaces:
Runtime error
Runtime error
File size: 9,120 Bytes
395d300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import numpy as np
from typing import List, Union, Tuple, Dict
import random
from PIL import Image
import cv2
import imageio, os
import os.path as osp
from tqdm import tqdm
from panopticapi.utils import rgb2id
import traceback
from utils.io_utils import mask2rle, dict2json, fgbg_hist_matching
from utils.logger import LOGGER
from utils.constants import CATEGORIES, IMAGE_ID_ZFILL
from .transforms import get_fg_transforms, get_bg_transforms, quantize_image, resize2height, rotate_image
from .sampler import random_load_valid_bg, random_load_valid_fg, NameSampler, NormalSampler, PossionSampler, PersonBBoxSampler
from .paste_methods import regular_paste, partition_paste
def syn_animecoco_dataset(
bg_list: List, fg_info_list: List[Dict], dataset_save_dir: str, policy: str='train',
tgt_size=640, syn_num_multiplier=2.5, regular_paste_prob=0.4, person_paste_prob=0.4,
max_syn_num=-1, image_id_start=0, obj_id_start=0, hist_match_prob=0.2, quantize_prob=0.25):
LOGGER.info(f'syn data policy: {policy}')
LOGGER.info(f'background: {len(bg_list)} foreground: {len(fg_info_list)}')
numfg_sampler = PossionSampler(min_val=1, max_val=9, lam=2.5)
numfg_regpaste_sampler = PossionSampler(min_val=2, max_val=9, lam=3.5)
regpaste_size_sampler = NormalSampler(scalar=tgt_size, to_int=True, max_scale=0.75)
color_correction_sampler = NameSampler({'hist_match': hist_match_prob, 'quantize': quantize_prob}, )
paste_method_sampler = NameSampler({'regular': regular_paste_prob, 'personbbox': person_paste_prob,
'partition': 1-regular_paste_prob-person_paste_prob})
fg_transform = get_fg_transforms(tgt_size, transform_variant=policy)
fg_distort_transform = get_fg_transforms(tgt_size, transform_variant='distort_only')
bg_transform = get_bg_transforms('train', tgt_size)
image_id = image_id_start + 1
obj_id = obj_id_start + 1
det_annotations, image_meta = [], []
syn_num = int(syn_num_multiplier * len(fg_info_list))
if max_syn_num > 0:
syn_num = max_syn_num
ann_save_dir = osp.join(dataset_save_dir, 'annotations')
image_save_dir = osp.join(dataset_save_dir, policy)
if not osp.exists(image_save_dir):
os.makedirs(image_save_dir)
if not osp.exists(ann_save_dir):
os.makedirs(ann_save_dir)
is_train = policy == 'train'
if is_train:
jpg_save_quality = [75, 85, 95]
else:
jpg_save_quality = [95]
if isinstance(fg_info_list[0], str):
for ii, fgp in enumerate(fg_info_list):
if isinstance(fgp, str):
fg_info_list[ii] = {'file_path': fgp, 'tag_string': [], 'danbooru': False, 'category_id': 0}
if person_paste_prob > 0:
personbbox_sampler = PersonBBoxSampler(
'data/cocoperson_bbox_samples.json', fg_info_list,
fg_transform=fg_distort_transform if is_train else None, is_train=is_train)
total = tqdm(range(syn_num))
for fin in total:
try:
paste_method = paste_method_sampler.sample()
fgs = []
if paste_method == 'regular':
num_fg = numfg_regpaste_sampler.sample()
size = regpaste_size_sampler.sample()
while len(fgs) < num_fg:
tgt_height = int(random.uniform(0.7, 1.2) * size)
fg, fginfo = random_load_valid_fg(fg_info_list)
fg = resize2height(fg, tgt_height)
if is_train:
fg = fg_distort_transform(image=fg)['image']
rotate_deg = random.randint(-40, 40)
else:
rotate_deg = random.randint(-30, 30)
if random.random() < 0.3:
fg = rotate_image(fg, rotate_deg, alpha_crop=True)
fgs.append({'image': fg, 'fginfo': fginfo})
while len(fgs) < num_fg and random.random() < 0.15:
fgs.append({'image': fg, 'fginfo': fginfo})
elif paste_method == 'personbbox':
fgs = personbbox_sampler.sample_matchfg(tgt_size)
else:
num_fg = numfg_sampler.sample()
fgs = []
for ii in range(num_fg):
fg, fginfo = random_load_valid_fg(fg_info_list)
fg = fg_transform(image=fg)['image']
h, w = fg.shape[:2]
if num_fg > 6:
downscale = min(tgt_size / 2.5 / w, tgt_size / 2.5 / h)
if downscale < 1:
fg = cv2.resize(fg, (int(w * downscale), int(h * downscale)), interpolation=cv2.INTER_AREA)
fgs.append({'image': fg, 'fginfo': fginfo})
bg = random_load_valid_bg(bg_list)
bg = bg_transform(image=bg)['image']
color_correct = color_correction_sampler.sample()
if color_correct == 'hist_match':
fgbg_hist_matching(fgs, bg)
bg: Image = Image.fromarray(bg)
if paste_method == 'regular':
segments_info, segments = regular_paste(fgs, bg, regen_bboxes=True)
elif paste_method == 'personbbox':
segments_info, segments = regular_paste(fgs, bg, regen_bboxes=False)
elif paste_method == 'partition':
segments_info, segments = partition_paste(fgs, bg, )
else:
print(f'invalid paste method: {paste_method}')
raise NotImplementedError
image = np.array(bg)
if color_correct == 'quantize':
mask = cv2.inRange(segments, np.array([0,0,0]), np.array([0,0,0]))
# cv2.imshow("mask", mask)
image = quantize_image(image, random.choice([12, 16, 32]), 'kmeans', mask=mask)[0]
# postprocess & check if instance is valid
for ii, segi in enumerate(segments_info):
if segi['area'] == 0:
continue
x, y, w, h = segi['bbox']
x2, y2 = x+w, y+h
c = segments[y: y2, x: x2]
pan_png = rgb2id(c)
cmask = (pan_png == segi['id'])
area = cmask.sum()
if paste_method != 'partition' and \
area / (fgs[ii]['image'][..., 3] > 30).sum() < 0.25:
# cv2.imshow('im', fgs[ii]['image'])
# cv2.imshow('mask', fgs[ii]['image'][..., 3])
# cv2.imshow('seg', segments)
# cv2.waitKey(0)
cmask_ids = np.where(cmask)
segments[y: y2, x: x2][cmask_ids] = 0
image[y: y2, x: x2][cmask_ids] = (127, 127, 127)
continue
cmask = cmask.astype(np.uint8) * 255
dx, dy, w, h = cv2.boundingRect(cv2.findNonZero(cmask))
_bbox = [dx + x, dy + y, w, h]
seg = cv2.copyMakeBorder(cmask, y, tgt_size-y2, x, tgt_size-x2, cv2.BORDER_CONSTANT) > 0
assert seg.shape[0] == tgt_size and seg.shape[1] == tgt_size
segmentation = mask2rle(seg)
det_annotations.append({
'id': obj_id,
'category_id': fgs[ii]['fginfo']['category_id'],
'iscrowd': 0,
'segmentation': segmentation,
'image_id': image_id,
'area': area,
'tag_string': fgs[ii]['fginfo']['tag_string'],
'tag_string_character': fgs[ii]['fginfo']['tag_string_character'],
'bbox': [float(c) for c in _bbox]
})
obj_id += 1
# cv2.imshow('c', cv2.cvtColor(c, cv2.COLOR_RGB2BGR))
# cv2.imshow('cmask', cmask)
# cv2.waitKey(0)
image_id_str = str(image_id).zfill(IMAGE_ID_ZFILL)
image_file_name = image_id_str + '.jpg'
image_meta.append({
"id": image_id,"height": tgt_size,"width": tgt_size, "file_name": image_file_name, "id": image_id
})
# LOGGER.info(f'paste method: {paste_method} color correct: {color_correct}')
# cv2.imshow('image', cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
# cv2.imshow('segments', cv2.cvtColor(segments, cv2.COLOR_RGB2BGR))
# cv2.waitKey(0)
imageio.imwrite(osp.join(image_save_dir, image_file_name), image, quality=random.choice(jpg_save_quality))
image_id += 1
except:
LOGGER.error(traceback.format_exc())
continue
det_meta = {
"info": {},
"licenses": [],
"images": image_meta,
"annotations": det_annotations,
"categories": CATEGORIES
}
detp = osp.join(ann_save_dir, f'det_{policy}.json')
dict2json(det_meta, detp)
LOGGER.info(f'annotations saved to {detp}')
return image_id, obj_id |