AnimeIns_CPU / animeinsseg /data /paste_methods.py
ljsabc's picture
Initial commit.
395d300
raw
history blame
11.2 kB
import numpy as np
from typing import List, Union, Tuple, Dict
import random
from PIL import Image
import cv2
import os.path as osp
from tqdm import tqdm
from panopticapi.utils import rgb2id, id2rgb
from time import time
import traceback
from utils.io_utils import bbox_overlap_area
from utils.logger import LOGGER
from utils.constants import COLOR_PALETTE
class PartitionTree:
def __init__(self, bleft: int, btop: int, bright: int, bbottom: int, parent = None) -> None:
self.left: PartitionTree = None
self.right: PartitionTree = None
self.top: PartitionTree = None
self.bottom: PartitionTree = None
if bright < bleft:
bright = bleft
if bbottom < btop:
bbottom = btop
self.bleft = bleft
self.bright = bright
self.btop = btop
self.bbottom = bbottom
self.parent: PartitionTree = parent
def is_leaf(self):
return self.left is None
def new_partition(self, new_rect: List):
self.left = PartitionTree(self.bleft, self.btop, new_rect[0], self.bbottom, self)
self.top = PartitionTree(self.bleft, self.btop, self.bright, new_rect[1], self)
self.right = PartitionTree(new_rect[2], self.btop, self.bright, self.bbottom, self)
self.bottom = PartitionTree(self.bleft, new_rect[3], self.bright, self.bbottom, self)
if self.parent is not None:
self.root_update_rect(new_rect)
def root_update_rect(self, rect):
root = self.get_root()
root.update_child_rect(rect)
def update_child_rect(self, rect: List):
if self.is_leaf():
self.update_from_rect(rect)
else:
self.left.update_child_rect(rect)
self.right.update_child_rect(rect)
self.top.update_child_rect(rect)
self.bottom.update_child_rect(rect)
def get_root(self):
if self.parent is not None:
return self.parent.get_root()
else:
return self
def update_from_rect(self, rect: List):
if not self.is_leaf():
return
ix = min(self.bright, rect[2]) - max(self.bleft, rect[0])
iy = min(self.bbottom, rect[3]) - max(self.btop, rect[1])
if not (ix > 0 and iy > 0):
return
new_ltrb0 = np.array([self.bleft, self.btop, self.bright, self.bbottom])
new_ltrb1 = new_ltrb0.copy()
if rect[0] > self.bleft and rect[0] < self.bright:
new_ltrb0[2] = rect[0]
else:
new_ltrb0[0] = rect[2]
if rect[1] > self.btop and rect[1] < self.bbottom:
new_ltrb1[3]= rect[1]
else:
new_ltrb1[1] = rect[3]
if (new_ltrb0[2:] - new_ltrb0[:2]).prod() > (new_ltrb1[2:] - new_ltrb1[:2]).prod():
self.bleft, self.btop, self.bright, self.bbottom = new_ltrb0
else:
self.bleft, self.btop, self.bright, self.bbottom = new_ltrb1
@property
def width(self) -> int:
return self.bright - self.bleft
@property
def height(self) -> int:
return self.bbottom - self.btop
def prefer_partition(self, tgt_h: int, tgt_w: int):
if self.is_leaf():
return self, min(self.width / tgt_w, 1.2) * min(self.height / tgt_h, 1.2)
else:
lp, ls = self.left.prefer_partition(tgt_h, tgt_w)
rp, rs = self.right.prefer_partition(tgt_h, tgt_w)
tp, ts = self.top.prefer_partition(tgt_h, tgt_w)
bp, bs = self.bottom.prefer_partition(tgt_h, tgt_w)
preferp = [(p, s) for s, p in sorted(zip([ls, rs, ts, bs],[lp, rp, tp, bp]), key=lambda pair: pair[0], reverse=True)][0]
return preferp
def new_random_pos(self, fg_h: int, fg_w: int, im_h: int, im_w: int, random_sample: bool = False):
extx, exty = int(fg_w / 3), int(fg_h / 3)
extxb, extyb = int(fg_w / 10), int(fg_h / 10)
region_w, region_h = self.width + extx, self.height + exty
downscale_ratio = max(min(region_w / fg_w, region_h / fg_h), 0.8)
if downscale_ratio < 1:
fg_h = int(downscale_ratio * fg_h)
fg_w = int(downscale_ratio * fg_w)
max_x, max_y = self.bright + extx - fg_w, self.bbottom + exty - fg_h
max_x = min(im_w+extxb-fg_w, max_x)
max_y = min(im_h+extyb-fg_h, max_y)
min_x = max(min(self.bright + extx - fg_w, self.bleft - extx), -extx)
min_x = max(-extxb, min_x)
min_y = max(min(self.bbottom + exty - fg_h, self.btop - exty), -exty)
min_y = max(-extyb, min_y)
px, py = min_x, min_y
if min_x < max_x:
if random_sample:
px = random.randint(min_x, max_x)
else:
px = int((min_x + max_x) / 2)
if min_y < max_y:
if random_sample:
py = random.randint(min_y, max_y)
else:
py = int((min_y + max_y) / 2)
return px, py, downscale_ratio
def drawpartition(self, image: np.ndarray, color = None):
if color is None:
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
if not self.is_leaf():
cv2.rectangle(image, (self.bleft, self.btop), (self.bright, self.bbottom), color, 2)
if not self.is_leaf():
c = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
self.left.drawpartition(image, c)
self.right.drawpartition(image, c)
self.top.drawpartition(image, c)
self.bottom.drawpartition(image, c)
def paste_one_fg(fg_pil: Image, bg: Image, segments: np.ndarray, px: int, py: int, seg_color: Tuple, cal_area=True):
fg_h, fg_w = fg_pil.height, fg_pil.width
im_h, im_w = bg.height, bg.width
bg.paste(fg_pil, (px, py), mask=fg_pil)
bgx1, bgx2, bgy1, bgy2 = px, px+fg_w, py, py+fg_h
fgx1, fgx2, fgy1, fgy2 = 0, fg_w, 0, fg_h
if bgx1 < 0:
fgx1 = -bgx1
bgx1 = 0
if bgy1 < 0:
fgy1 = -bgy1
bgy1 = 0
if bgx2 > im_w:
fgx2 = im_w - bgx2
bgx2 = im_w
if bgy2 > im_h:
fgy2 = im_h - bgy2
bgy2 = im_h
fg_mask = np.array(fg_pil)[fgy1: fgy2, fgx1: fgx2, 3] > 30
segments[bgy1: bgy2, bgx1: bgx2][np.where(fg_mask)] = seg_color
if cal_area:
area = fg_mask.sum()
else:
area = 1
bbox = [bgx1, bgy1, bgx2-bgx1, bgy2-bgy1]
return area, bbox, [bgx1, bgy1, bgx2, bgy2]
def partition_paste(fg_list, bg: Image):
segments_info = []
fg_list.sort(key = lambda x: x['image'].shape[0] * x['image'].shape[1], reverse=True)
pnode: PartitionTree = None
im_h, im_w = bg.height, bg.width
ptree = PartitionTree(0, 0, bg.width, bg.height)
segments = np.zeros((im_h, im_w, 3), np.uint8)
for ii, fg_dict in enumerate(fg_list):
fg = fg_dict['image']
fg_h, fg_w = fg.shape[:2]
pnode, _ = ptree.prefer_partition(fg_h, fg_w)
px, py, downscale_ratio = pnode.new_random_pos(fg_h, fg_w, im_h, im_w, True)
fg_pil = Image.fromarray(fg)
if downscale_ratio < 1:
fg_pil = fg_pil.resize((int(fg_w * downscale_ratio), int(fg_h * downscale_ratio)), resample=Image.Resampling.LANCZOS)
# fg_h, fg_w = fg_pil.height, fg_pil.width
seg_color = COLOR_PALETTE[ii]
area, bbox, xyxy = paste_one_fg(fg_pil, bg, segments, px,py, seg_color, cal_area=False)
pnode.new_partition(xyxy)
segments_info.append({
'id': rgb2id(seg_color),
'bbox': bbox,
'area': area
})
return segments_info, segments
# if downscale_ratio < 1:
# fg_pil = fg_pil.resize((int(fg_w * downscale_ratio), int(fg_h * downscale_ratio)), resample=Image.Resampling.LANCZOS)
# fg_h, fg_w = fg_pil.height, fg_pil.width
def gen_fg_regbboxes(fg_list: List[Dict], tgt_size: int, min_overlap=0.15, max_overlap=0.8):
def _sample_y(h):
y = (tgt_size - h) // 2
if y > 0:
yrange = min(y, h // 4)
y += random.randint(-yrange, yrange)
return y
else:
return 0
shape_list = []
depth_list = []
for fg_dict in fg_list:
shape_list.append(fg_dict['image'].shape[:2])
shape_list = np.array(shape_list)
depth_list = np.random.random(len(fg_list))
depth_list[shape_list[..., 1] > 0.6 * tgt_size] += 1
# num_fg = len(fg_list)
# grid_sample = random.random() < 0.4 or num_fg > 6
# grid_sample = grid_sample and num_fg < 9 and num_fg > 3
# grid_sample = False
# if grid_sample:
# grid_pos = np.arange(9)
# np.random.shuffle(grid_pos)
# grid_pos = grid_pos[: num_fg]
# grid_x = grid_pos % 3
# grid_y = grid_pos // 3
# else:
pos_list = [[0, _sample_y(shape_list[0][0])]]
pre_overlap = 0
for ii, ((h, w), d) in enumerate(zip(shape_list[1:], depth_list[1:])):
(preh, prew), predepth, (prex, prey) = shape_list[ii], depth_list[ii], pos_list[ii]
isfg = d < predepth
y = _sample_y(h)
x = prex+prew
if isfg:
min_x = max_x = x
if pre_overlap < max_overlap:
min_x -= (max_overlap - pre_overlap) * prew
min_x = int(min_x)
if pre_overlap < min_overlap:
max_x -= (min_overlap - pre_overlap) * prew
max_x = int(max_x)
x = random.randint(min_x, max_x)
pre_overlap = 0
else:
overlap = random.uniform(min_overlap, max_overlap)
x -= int(overlap * w)
area = h * w
overlap_area = bbox_overlap_area([x, y, w, h], [prex, prey, prew, preh])
pre_overlap = overlap_area / area
pos_list.append([x, y])
pos_list = np.array(pos_list)
last_x2 = pos_list[-1][0] + shape_list[-1][1]
valid_shiftx = tgt_size - last_x2
if valid_shiftx > 0:
shiftx = random.randint(0, valid_shiftx)
pos_list[:, 0] += shiftx
else:
pos_list[:, 0] += valid_shiftx // 2
for pos, fg_dict, depth in zip(pos_list, fg_list, depth_list):
fg_dict['pos'] = pos
fg_dict['depth'] = depth
fg_list.sort(key=lambda x: x['depth'], reverse=True)
def regular_paste(fg_list, bg: Image, regen_bboxes=False):
segments_info = []
im_h, im_w = bg.height, bg.width
if regen_bboxes:
random.shuffle(fg_list)
gen_fg_regbboxes(fg_list, im_h)
segments = np.zeros((im_h, im_w, 3), np.uint8)
for ii, fg_dict in enumerate(fg_list):
fg = fg_dict['image']
px, py = fg_dict.pop('pos')
fg_pil = Image.fromarray(fg)
seg_color = COLOR_PALETTE[ii]
area, bbox, xyxy = paste_one_fg(fg_pil, bg, segments, px,py, seg_color, cal_area=True)
segments_info.append({
'id': rgb2id(seg_color),
'bbox': bbox,
'area': area
})
return segments_info, segments