import os import subprocess import signal os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" import gradio as gr import tempfile from huggingface_hub import HfApi, ModelCard, whoami from gradio_huggingfacehub_search import HuggingfaceHubSearch from pathlib import Path from textwrap import dedent from apscheduler.schedulers.background import BackgroundScheduler HF_TOKEN = os.environ.get("HF_TOKEN") CONVERSION_SCRIPT = "convert_lora_to_gguf.py" def process_model(peft_model_id: str, q_method: str, private_repo, oauth_token: gr.OAuthToken | None): if oauth_token.token is None: raise ValueError("You must be logged in to use GGUF-my-lora") model_name = peft_model_id.split('/')[-1] gguf_output_name = f"{model_name}-{q_method.lower()}.gguf" try: api = HfApi(token=oauth_token.token) dl_pattern = ["*.md", "*.json", "*.model"] pattern = ( "*.safetensors" if any( file.path.endswith(".safetensors") for file in api.list_repo_tree( repo_id=peft_model_id, recursive=True, ) ) else "*.bin" ) dl_pattern += [pattern] if not os.path.exists("downloads"): os.makedirs("downloads") if not os.path.exists("outputs"): os.makedirs("outputs") with tempfile.TemporaryDirectory(dir="outputs") as outputdir: gguf_output_path = Path(outputdir)/gguf_output_name readme_output_path = Path(outputdir)/"README.md" with tempfile.TemporaryDirectory(dir="downloads") as tmpdir: # Keep the model name as the dirname so the model name metadata is populated correctly local_dir = Path(tmpdir)/model_name print(local_dir) api.snapshot_download(repo_id=peft_model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern) print("Model downloaded successfully!") print(f"Current working directory: {os.getcwd()}") print(f"Model directory contents: {os.listdir(local_dir)}") adapter_config_dir = local_dir/"adapter_config.json" if not os.path.exists(adapter_config_dir): raise Exception('adapter_config.json not found. Please ensure the selected repo is a PEFT LoRA model.

If you are converting a model (not a LoRA adapter), please use GGUF-my-repo instead.') result = subprocess.run([ "python", f"llama.cpp/{CONVERSION_SCRIPT}", local_dir, "--outtype", q_method.lower(), "--outfile", gguf_output_path, ], shell=False, capture_output=True) print(result) if result.returncode != 0: raise Exception(f"Error converting to GGUF {q_method}: {result.stderr}") print("Model converted to GGUF successfully!") print(f"Converted model path: {gguf_output_path}") # Create empty repo username = whoami(oauth_token.token)["name"] new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{q_method}-GGUF", exist_ok=True, private=private_repo) new_repo_id = new_repo_url.repo_id print("Repo created successfully!", new_repo_url) # Upload the GGUF model api.upload_file( path_or_fileobj=gguf_output_path, path_in_repo=gguf_output_name, repo_id=new_repo_id, ) print("Uploaded", gguf_output_name) try: card = ModelCard.load(peft_model_id, token=oauth_token.token) except: card = ModelCard("") if card.data.tags is None: card.data.tags = [] card.data.tags.append("llama-cpp") card.data.tags.append("gguf-my-lora") card.data.base_model = peft_model_id card.text = dedent( f""" # {new_repo_id} This LoRA adapter was converted to GGUF format from [`{peft_model_id}`](https://huggingface.co/{peft_model_id}) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space. Refer to the [original adapter repository](https://huggingface.co/{peft_model_id}) for more details. ## Use with llama.cpp ```bash # with cli llama-cli -m base_model.gguf --lora {gguf_output_name} (...other args) # with server llama-server -m base_model.gguf --lora {gguf_output_name} (...other args) ``` To know more about LoRA usage with llama.cpp server, refer to the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md). """ ) card.save(readme_output_path) api.upload_file( path_or_fileobj=readme_output_path, path_in_repo="README.md", repo_id=new_repo_id, ) return ( f'

✅ DONE



Find your repo here: {new_repo_id}' ) except Exception as e: return (f"

❌ ERROR



{e}") css="""/* Custom CSS to allow scrolling */ .gradio-container {overflow-y: auto;} """ # Create Gradio interface with gr.Blocks(css=css) as demo: gr.Markdown("You must be logged in to use GGUF-my-lora.") gr.LoginButton(min_width=250) peft_model_id = HuggingfaceHubSearch( label="PEFT LoRA repository", placeholder="Search for repository on Huggingface", search_type="model", ) q_method = gr.Dropdown( ["F32", "F16", "Q8_0"], label="Quantization Method", info="(Note: Quantization less than Q8 produces very poor results)", value="F16", filterable=False, visible=True ) private_repo = gr.Checkbox( value=False, label="Private Repo", info="Create a private repo under your username." ) iface = gr.Interface( fn=process_model, inputs=[ peft_model_id, q_method, private_repo, ], outputs=[ gr.Markdown(label="output"), ], title="Convert PEFT LoRA adapters to GGUF, blazingly fast ⚡!", description="The space takes a PEFT LoRA (stored in a HF repo) as input, converts it to GGUF and creates a Public repo under your HF user namespace.

For more information, please refer to [this blog post](https://huggingface.co/blog/ngxson/gguf-my-lora)", api_name=False ) def restart_space(): HfApi().restart_space(repo_id="ggml-org/gguf-my-lora", token=HF_TOKEN, factory_reboot=True) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=21600) scheduler.start() # Launch the interface demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)