import gradio from fastai.vision.all import * MODELS_PATH = Path('./models') EXAMPLES_PATH = Path('./examples') # Required function expected by fastai learn object # it wasn't exported as a part of the pickle # as it was defined externally to the learner object # during the training time dataloaders setup def label_func(filepath): return filepath.parent.name LEARN = load_learner(MODELS_PATH/'flowers-fruits-resnet50-model.pkl') LABELS = LEARN.dls.vocab def gradio_predict(img): img = PILImage.create(img) _pred, _pred_idx, probs = LEARN.predict(img) labels_probs = {LABELS[i]: float(probs[i]) for i, _ in enumerate(LABELS)} return labels_probs with open('gradio_article.md') as f: article = f.read() interface_options = { "title": "flowers-and-fruits-classifier (ResNet50|fast.ai)", "description": "A Flowers-Fruits image classifier trained on the 'https://duckduckgo.com/' dataset, using ResNet50 via fast.ai.", "article": article, "examples" : [f'{EXAMPLES_PATH}/{f.name}' for f in EXAMPLES_PATH.iterdir()], "layout": "horizontal", "theme": "default", } demo = gradio.Interface(fn=gradio_predict, inputs=gradio.inputs.Image(shape=(512, 512)), outputs=gradio.outputs.Label(num_top_classes=5), **interface_options) launch_options = { "enable_queue": True, "share": False, } demo.launch(**launch_options)