Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import string | |
import numpy as np | |
from transformers import AutoTokenizer | |
import onnxruntime as ort | |
import os | |
# Initialize client and models | |
client = InferenceClient(api_key=os.environ.get('HF_TOKEN')) | |
# Constants for EOU calculation | |
PUNCS = string.punctuation.replace("'", "") | |
MAX_HISTORY = 4 | |
MAX_HISTORY_TOKENS = 1024 | |
EOU_THRESHOLD = 0.5 | |
# Initialize tokenizer and ONNX session | |
HG_MODEL = "livekit/turn-detector" | |
ONNX_FILENAME = "model_quantized.onnx" | |
tokenizer = AutoTokenizer.from_pretrained(HG_MODEL) | |
onnx_session = ort.InferenceSession(ONNX_FILENAME, providers=["CPUExecutionProvider"]) | |
# Helper functions for EOU | |
def softmax(logits): | |
exp_logits = np.exp(logits - np.max(logits)) | |
return exp_logits / np.sum(exp_logits) | |
def normalize_text(text): | |
def strip_puncs(text): | |
return text.translate(str.maketrans("", "", PUNCS)) | |
return " ".join(strip_puncs(text).lower().split()) | |
def format_chat_ctx(chat_ctx): | |
new_chat_ctx = [] | |
for msg in chat_ctx: | |
if msg["role"] in ("user", "assistant"): | |
content = normalize_text(msg["content"]) | |
if content: | |
msg["content"] = content | |
new_chat_ctx.append(msg) | |
convo_text = tokenizer.apply_chat_template( | |
new_chat_ctx, add_generation_prompt=False, add_special_tokens=False, tokenize=False | |
) | |
ix = convo_text.rfind("<|im_end|>") | |
return convo_text[:ix] | |
def calculate_eou(chat_ctx, session): | |
formatted_text = format_chat_ctx(chat_ctx[-MAX_HISTORY:]) | |
inputs = tokenizer( | |
formatted_text, | |
return_tensors="np", | |
truncation=True, | |
max_length=MAX_HISTORY_TOKENS, | |
) | |
input_ids = np.array(inputs["input_ids"], dtype=np.int64) | |
outputs = session.run(["logits"], {"input_ids": input_ids}) | |
logits = outputs[0][0, -1, :] | |
probs = softmax(logits) | |
eou_token_id = tokenizer.encode("<|im_end|>")[-1] | |
return probs[eou_token_id] | |
messages = [] | |
def chatbot(user_input): | |
global messages | |
# Exit condition | |
if user_input.lower() == "exit": | |
messages = [] # Reset conversation history | |
return "Chat ended. Refresh the page to start again." | |
# Add user message to conversation history | |
messages.append({"role": "user", "content": user_input}) | |
# Calculate EOU to determine if user has finished typing | |
eou_prob = calculate_eou(messages, onnx_session) | |
if eou_prob < EOU_THRESHOLD: | |
yield "[I'm waiting for you to complete the sentence...]" | |
return | |
# Stream the chatbot's response | |
stream = client.chat.completions.create( | |
model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", | |
messages=messages, | |
temperature=0.6, | |
max_tokens=1024, | |
top_p=0.95, | |
stream=True | |
) | |
bot_response = "" | |
for chunk in stream: | |
bot_response += chunk.choices[0].delta.content | |
yield bot_response | |
# Add final bot response to conversation history | |
messages.append({"role": "assistant", "content": bot_response}) | |
# Create Gradio interface | |
with gr.Blocks(theme='darkdefault') as demo: | |
gr.Markdown("""# Chat with DeepSeek-R1 | |
Type your message below to interact with the chatbot. Type "exit" to end the conversation. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...") | |
submit_button = gr.Button("Send") | |
with gr.Column(): | |
chat_output = gr.Textbox(label="Chatbot Response", interactive=False) | |
# Define interactions | |
submit_button.click(chatbot, inputs=[user_input], outputs=[chat_output]) | |
# Launch the app | |
demo.launch() | |