Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer | |
import onnxruntime as ort | |
import numpy as np | |
import string | |
from huggingface_hub import InferenceClient | |
import os | |
client = InferenceClient(api_key=os.environ.get('HF_TOKEN')) | |
# Model and ONNX setup | |
HG_MODEL = "livekit/turn-detector" | |
ONNX_FILENAME = "model_quantized.onnx" | |
PUNCS = string.punctuation.replace("'", "") | |
MAX_HISTORY = 4 # Adjusted to use the last 4 messages | |
MAX_HISTORY_TOKENS = 512 | |
EOU_THRESHOLD = 0.5 # Updated threshold to match original | |
# Initialize ONNX model | |
tokenizer = AutoTokenizer.from_pretrained(HG_MODEL) | |
onnx_session = ort.InferenceSession(ONNX_FILENAME, providers=["CPUExecutionProvider"]) | |
# Softmax function | |
def softmax(logits): | |
exp_logits = np.exp(logits - np.max(logits)) | |
return exp_logits / np.sum(exp_logits) | |
# Normalize text | |
def normalize_text(text): | |
def strip_puncs(text): | |
return text.translate(str.maketrans("", "", PUNCS)) | |
return " ".join(strip_puncs(text).lower().split()) | |
# Format chat context | |
def format_chat_ctx(chat_ctx): | |
new_chat_ctx = [] | |
for msg in chat_ctx: | |
if msg["role"] in ("user", "assistant"): | |
content = normalize_text(msg["content"]) | |
if content: | |
msg["content"] = content | |
new_chat_ctx.append(msg) | |
# Tokenize with chat template | |
convo_text = tokenizer.apply_chat_template( | |
new_chat_ctx, add_generation_prompt=False, add_special_tokens=False, tokenize=False | |
) | |
# Remove EOU token from the current utterance | |
ix = convo_text.rfind("<|im_end|>") | |
return convo_text[:ix] | |
# Calculate EOU probability | |
def calculate_eou(chat_ctx, session): | |
formatted_text = format_chat_ctx(chat_ctx[-MAX_HISTORY:]) # Use the last 4 messages | |
inputs = tokenizer( | |
formatted_text, | |
return_tensors="np", | |
truncation=True, | |
max_length=MAX_HISTORY_TOKENS, | |
) | |
input_ids = np.array(inputs["input_ids"], dtype=np.int64) | |
outputs = session.run(["logits"], {"input_ids": input_ids}) | |
logits = outputs[0][0, -1, :] | |
probs = softmax(logits) | |
eou_token_id = tokenizer.encode("<|im_end|>")[-1] | |
return probs[eou_token_id] | |
# Respond function | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Keep the last 4 conversation pairs (user-assistant) | |
messages = [{"role": "system", "content": os.environ.get("CHARACTER_DESC")}] | |
for val in history[-30:]: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
# Add the new user message to the context | |
messages.append({"role": "user", "content": message}) | |
# Calculate EOU probability | |
# eou_prob = calculate_eou(messages, onnx_session) | |
# print(f"EOU Probability: {eou_prob}") # Debug output | |
# # If EOU is below the threshold, ask for more input | |
# if eou_prob < EOU_THRESHOLD: | |
# yield "[Waiting for user to continue input...]" | |
# return | |
stream = client.chat.completions.create( | |
model=os.environ.get('MODEL_ID'), | |
messages=messages, | |
stream=True | |
) | |
bot_response = "" | |
for chunk in stream: | |
bot_response += chunk.choices[0].delta.content | |
yield bot_response | |
print(bot_response) | |
# Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
# additional_inputs=[ | |
# # Commented out to disable user modification of the system message | |
# # gr.Textbox(value="You are an assistant.", label="System message"), | |
# gr.Slider(minimum=1, maximum=4096, value=256, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" | |
# ), | |
# ], | |
) | |
if __name__ == "__main__": | |
demo.launch() |