Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
from threading import Thread
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import spaces
|
6 |
+
import gradio as gr
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
|
8 |
+
|
9 |
+
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
10 |
+
|
11 |
+
MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
12 |
+
CHAT_TEMPLATE = "َAuto"
|
13 |
+
MODEL_NAME = MODEL_ID.split("/")[-1]
|
14 |
+
CONTEXT_LENGTH = 16000
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
latex_delimiters_set = [{
|
19 |
+
"left": "\\(",
|
20 |
+
"right": "\\)",
|
21 |
+
"display": False
|
22 |
+
}, {
|
23 |
+
"left": "\\begin{equation}",
|
24 |
+
"right": "\\end{equation}",
|
25 |
+
"display": True
|
26 |
+
}, {
|
27 |
+
"left": "\\begin{align}",
|
28 |
+
"right": "\\end{align}",
|
29 |
+
"display": True
|
30 |
+
}, {
|
31 |
+
"left": "\\begin{alignat}",
|
32 |
+
"right": "\\end{alignat}",
|
33 |
+
"display": True
|
34 |
+
}, {
|
35 |
+
"left": "\\begin{gather}",
|
36 |
+
"right": "\\end{gather}",
|
37 |
+
"display": True
|
38 |
+
}, {
|
39 |
+
"left": "\\begin{CD}",
|
40 |
+
"right": "\\end{CD}",
|
41 |
+
"display": True
|
42 |
+
}, {
|
43 |
+
"left": "\\[",
|
44 |
+
"right": "\\]",
|
45 |
+
"display": True
|
46 |
+
}]
|
47 |
+
|
48 |
+
|
49 |
+
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
50 |
+
# Format history with a given chat template
|
51 |
+
|
52 |
+
|
53 |
+
stop_tokens = ["<|endoftext|>", "<|im_end|>","|im_end|"]
|
54 |
+
instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n'
|
55 |
+
for user, assistant in history:
|
56 |
+
instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n'
|
57 |
+
instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n'
|
58 |
+
|
59 |
+
print(instruction)
|
60 |
+
|
61 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=False)
|
62 |
+
enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True)
|
63 |
+
input_ids, attention_mask = enc.input_ids, enc.attention_mask
|
64 |
+
|
65 |
+
if input_ids.shape[1] > CONTEXT_LENGTH:
|
66 |
+
input_ids = input_ids[:, -CONTEXT_LENGTH:]
|
67 |
+
attention_mask = attention_mask[:, -CONTEXT_LENGTH:]
|
68 |
+
|
69 |
+
generate_kwargs = dict(
|
70 |
+
input_ids=input_ids.to(device),
|
71 |
+
attention_mask=attention_mask.to(device),
|
72 |
+
streamer=streamer,
|
73 |
+
do_sample=True,
|
74 |
+
temperature=temperature,
|
75 |
+
max_new_tokens=max_new_tokens,
|
76 |
+
top_k=top_k,
|
77 |
+
repetition_penalty=repetition_penalty,
|
78 |
+
top_p=top_p
|
79 |
+
)
|
80 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
81 |
+
t.start()
|
82 |
+
outputs = []
|
83 |
+
for new_token in streamer:
|
84 |
+
outputs.append(new_token)
|
85 |
+
if new_token in stop_tokens:
|
86 |
+
|
87 |
+
break
|
88 |
+
yield "".join(outputs)
|
89 |
+
|
90 |
+
|
91 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
92 |
+
model = AutoModelForCausalLM.from_pretrained(
|
93 |
+
MODEL_ID,
|
94 |
+
device_map="auto",
|
95 |
+
)
|
96 |
+
|
97 |
+
# Create Gradio interface
|
98 |
+
gr.ChatInterface(
|
99 |
+
predict,
|
100 |
+
|
101 |
+
additional_inputs_accordion=gr.Accordion(label="Parameters", open=False),
|
102 |
+
additional_inputs=[
|
103 |
+
gr.Textbox("You are a useful assistant. first recognize user request and then reply carfuly and thinking", label="System prompt"),
|
104 |
+
gr.Slider(0, 1, 0.6, label="Temperature"),
|
105 |
+
gr.Slider(0, 32000, 10000, label="Max new tokens"),
|
106 |
+
gr.Slider(1, 80, 40, label="Top K sampling"),
|
107 |
+
gr.Slider(0, 2, 1.1, label="Repetition penalty"),
|
108 |
+
gr.Slider(0, 1, 0.95, label="Top P sampling"),
|
109 |
+
],
|
110 |
+
).queue().launch()
|