qew / app.py
beyoru's picture
Update app.py
4f81850 verified
raw
history blame
3.47 kB
import gradio as gr
from transformers import AutoTokenizer
import onnxruntime as ort
import numpy as np
import string
from huggingface_hub import InferenceClient
import os
# Initialize Qwen client
qwen_client = InferenceClient(os.environ.get("HF_TOKEN"))
# Model and ONNX setup
HG_MODEL = "livekit/turn-detector"
ONNX_FILENAME = "model_quantized.onnx"
PUNCS = string.punctuation.replace("'", "")
MAX_HISTORY = 4
MAX_HISTORY_TOKENS = 512
EOU_THRESHOLD = 0.5
# Initialize ONNX model
tokenizer = AutoTokenizer.from_pretrained(HG_MODEL)
onnx_session = ort.InferenceSession(ONNX_FILENAME, providers=["CPUExecutionProvider"])
def softmax(logits):
exp_logits = np.exp(logits - np.max(logits))
return exp_logits / np.sum(exp_logits)
def normalize_text(text):
def strip_puncs(text):
return text.translate(str.maketrans("", "", PUNCS))
return " ".join(strip_puncs(text).lower().split())
def format_chat_ctx(chat_ctx):
new_chat_ctx = []
for msg in chat_ctx:
if msg["role"] in ("user", "assistant"):
content = normalize_text(msg["content"])
if content:
msg["content"] = content
new_chat_ctx.append(msg)
convo_text = tokenizer.apply_chat_template(
new_chat_ctx, add_generation_prompt=False, add_special_tokens=False, tokenize=False
)
ix = convo_text.rfind("<|im_end|>")
return convo_text[:ix]
def calculate_eou(chat_ctx, session):
formatted_text = format_chat_ctx(chat_ctx[-MAX_HISTORY:])
inputs = tokenizer(
formatted_text,
return_tensors="np",
truncation=True,
max_length=MAX_HISTORY_TOKENS,
)
input_ids = np.array(inputs["input_ids"], dtype=np.int64)
outputs = session.run(["logits"], {"input_ids": input_ids})
logits = outputs[0][0, -1, :]
probs = softmax(logits)
eou_token_id = tokenizer.encode("<|im_end|>")[-1]
return probs[eou_token_id]
def respond(
message,
history: list[tuple[str, str]],
max_tokens=2048,
temperature=0.6,
top_p=0.95,
):
messages = [{"role": "system", "content": os.environ.get("CHARACTER_DESC", "You are a helpful assistant.")}]
for val in history[-MAX_HISTORY:]:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
eou_prob = calculate_eou(messages, onnx_session)
if eou_prob < EOU_THRESHOLD:
yield "[Wait... Keep typing...]"
return
# Generate raw response without any processing
full_response = ""
stream = qwen_client.chat.completions.create(
model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
stream=True
)
for chunk in stream:
full_response += chunk.choices[0].delta.content
yield chunk.choices[0].delta.content # Send raw unmodified response to Gradio
# This will match both console and Gradio output
# Create Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Slider(1, 4096, value=256, label="Max Tokens"),
gr.Slider(0.1, 4.0, value=0.7, label="Temperature"),
gr.Slider(0.1, 1.0, value=0.95, label="Top-p"),
]
)
if __name__ == "__main__":
demo.launch()