Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,28 @@
|
|
1 |
-
import
|
2 |
from transformers import AutoTokenizer
|
|
|
3 |
import onnxruntime as ort
|
4 |
import numpy as np
|
5 |
import string
|
6 |
from huggingface_hub import InferenceClient
|
7 |
import os
|
8 |
|
9 |
-
#
|
10 |
-
|
|
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
14 |
ONNX_FILENAME = "model_quantized.onnx"
|
|
|
|
|
15 |
PUNCS = string.punctuation.replace("'", "")
|
16 |
-
MAX_HISTORY = 4
|
17 |
MAX_HISTORY_TOKENS = 512
|
18 |
-
EOU_THRESHOLD = 0.5
|
19 |
-
|
20 |
-
# Initialize ONNX model
|
21 |
-
tokenizer = AutoTokenizer.from_pretrained(HG_MODEL)
|
22 |
-
onnx_session = ort.InferenceSession(ONNX_FILENAME, providers=["CPUExecutionProvider"])
|
23 |
|
24 |
# Softmax function
|
25 |
def softmax(logits):
|
@@ -42,18 +45,15 @@ def format_chat_ctx(chat_ctx):
|
|
42 |
msg["content"] = content
|
43 |
new_chat_ctx.append(msg)
|
44 |
|
45 |
-
# Tokenize with chat template
|
46 |
convo_text = tokenizer.apply_chat_template(
|
47 |
new_chat_ctx, add_generation_prompt=False, add_special_tokens=False, tokenize=False
|
48 |
)
|
49 |
-
|
50 |
-
# Remove EOU token from the current utterance
|
51 |
ix = convo_text.rfind("<|im_end|>")
|
52 |
return convo_text[:ix]
|
53 |
|
54 |
# Calculate EOU probability
|
55 |
def calculate_eou(chat_ctx, session):
|
56 |
-
formatted_text = format_chat_ctx(chat_ctx[-MAX_HISTORY:])
|
57 |
inputs = tokenizer(
|
58 |
formatted_text,
|
59 |
return_tensors="np",
|
@@ -67,7 +67,6 @@ def calculate_eou(chat_ctx, session):
|
|
67 |
eou_token_id = tokenizer.encode("<|im_end|>")[-1]
|
68 |
return probs[eou_token_id]
|
69 |
|
70 |
-
|
71 |
# Respond function
|
72 |
def respond(
|
73 |
message,
|
@@ -76,28 +75,18 @@ def respond(
|
|
76 |
temperature,
|
77 |
top_p,
|
78 |
):
|
79 |
-
# Keep the last 4 conversation pairs (user-assistant)
|
80 |
messages = [{"role": "system", "content": os.environ.get("CHARACTER_DESC")}]
|
81 |
-
|
82 |
-
for val in history[-10:]: # Only use the last 4 pairs
|
83 |
if val[0]:
|
84 |
messages.append({"role": "user", "content": val[0]})
|
85 |
if val[1]:
|
86 |
messages.append({"role": "assistant", "content": val[1]})
|
87 |
-
|
88 |
-
# Add the new user message to the context
|
89 |
messages.append({"role": "user", "content": message})
|
90 |
-
|
91 |
-
# Calculate EOU probability
|
92 |
eou_prob = calculate_eou(messages, onnx_session)
|
93 |
-
print(f"EOU Probability: {eou_prob}")
|
94 |
-
|
95 |
-
# If EOU is below the threshold, ask for more input
|
96 |
if eou_prob < EOU_THRESHOLD:
|
97 |
yield "[Waiting for user to continue input...]"
|
98 |
return
|
99 |
-
|
100 |
-
# Generate response with Qwen
|
101 |
response = ""
|
102 |
for message in qwen_client.chat_completion(
|
103 |
messages,
|
@@ -109,23 +98,11 @@ def respond(
|
|
109 |
token = message.choices[0].delta.content
|
110 |
response += token
|
111 |
yield response
|
112 |
-
|
113 |
print(f"Generated response: {response}")
|
114 |
|
115 |
-
|
116 |
# Gradio interface
|
117 |
demo = gr.ChatInterface(
|
118 |
respond,
|
119 |
-
# additional_inputs=[
|
120 |
-
# # Commented out to disable user modification of the system message
|
121 |
-
# # gr.Textbox(value="You are an assistant.", label="System message"),
|
122 |
-
# gr.Slider(minimum=1, maximum=4096, value=256, step=1, label="Max new tokens"),
|
123 |
-
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
124 |
-
# gr.Slider(
|
125 |
-
# minimum=0.1,
|
126 |
-
# maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
|
127 |
-
# ),
|
128 |
-
# ],
|
129 |
)
|
130 |
|
131 |
if __name__ == "__main__":
|
|
|
1 |
+
from adapters import AutoAdapterModel # Ensure this library is correctly installed
|
2 |
from transformers import AutoTokenizer
|
3 |
+
import gradio as gr
|
4 |
import onnxruntime as ort
|
5 |
import numpy as np
|
6 |
import string
|
7 |
from huggingface_hub import InferenceClient
|
8 |
import os
|
9 |
|
10 |
+
# Load Base Model and Adapter
|
11 |
+
BASE_MODEL = "Qwen/Qwen2.5-1.5B-Instruct" # Replace with the actual base model ID
|
12 |
+
ADAPTER_NAME = "ystemsrx/Qwen2.5-Sex" # Replace with the correct adapter name
|
13 |
|
14 |
+
model = AutoAdapterModel.from_pretrained(BASE_MODEL)
|
15 |
+
model.load_adapter(ADAPTER_NAME, set_active=True)
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
17 |
+
|
18 |
+
# ONNX setup
|
19 |
ONNX_FILENAME = "model_quantized.onnx"
|
20 |
+
onnx_session = ort.InferenceSession(ONNX_FILENAME, providers=["CPUExecutionProvider"])
|
21 |
+
|
22 |
PUNCS = string.punctuation.replace("'", "")
|
23 |
+
MAX_HISTORY = 4
|
24 |
MAX_HISTORY_TOKENS = 512
|
25 |
+
EOU_THRESHOLD = 0.5
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Softmax function
|
28 |
def softmax(logits):
|
|
|
45 |
msg["content"] = content
|
46 |
new_chat_ctx.append(msg)
|
47 |
|
|
|
48 |
convo_text = tokenizer.apply_chat_template(
|
49 |
new_chat_ctx, add_generation_prompt=False, add_special_tokens=False, tokenize=False
|
50 |
)
|
|
|
|
|
51 |
ix = convo_text.rfind("<|im_end|>")
|
52 |
return convo_text[:ix]
|
53 |
|
54 |
# Calculate EOU probability
|
55 |
def calculate_eou(chat_ctx, session):
|
56 |
+
formatted_text = format_chat_ctx(chat_ctx[-MAX_HISTORY:])
|
57 |
inputs = tokenizer(
|
58 |
formatted_text,
|
59 |
return_tensors="np",
|
|
|
67 |
eou_token_id = tokenizer.encode("<|im_end|>")[-1]
|
68 |
return probs[eou_token_id]
|
69 |
|
|
|
70 |
# Respond function
|
71 |
def respond(
|
72 |
message,
|
|
|
75 |
temperature,
|
76 |
top_p,
|
77 |
):
|
|
|
78 |
messages = [{"role": "system", "content": os.environ.get("CHARACTER_DESC")}]
|
79 |
+
for val in history[-10:]:
|
|
|
80 |
if val[0]:
|
81 |
messages.append({"role": "user", "content": val[0]})
|
82 |
if val[1]:
|
83 |
messages.append({"role": "assistant", "content": val[1]})
|
|
|
|
|
84 |
messages.append({"role": "user", "content": message})
|
|
|
|
|
85 |
eou_prob = calculate_eou(messages, onnx_session)
|
86 |
+
print(f"EOU Probability: {eou_prob}")
|
|
|
|
|
87 |
if eou_prob < EOU_THRESHOLD:
|
88 |
yield "[Waiting for user to continue input...]"
|
89 |
return
|
|
|
|
|
90 |
response = ""
|
91 |
for message in qwen_client.chat_completion(
|
92 |
messages,
|
|
|
98 |
token = message.choices[0].delta.content
|
99 |
response += token
|
100 |
yield response
|
|
|
101 |
print(f"Generated response: {response}")
|
102 |
|
|
|
103 |
# Gradio interface
|
104 |
demo = gr.ChatInterface(
|
105 |
respond,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
)
|
107 |
|
108 |
if __name__ == "__main__":
|