beyoru commited on
Commit
a28e7a7
·
verified ·
1 Parent(s): 9710ff3

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +144 -0
  2. requirements.txt +9 -0
app.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
4
+ from qwen_vl_utils import process_vision_info
5
+ import torch
6
+ from PIL import Image
7
+ import subprocess
8
+ import numpy as np
9
+ import os
10
+ from threading import Thread
11
+ import uuid
12
+ import io
13
+
14
+ # Model and Processor Loading (Done once at startup)
15
+ MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct"
16
+ model = Qwen2VLForConditionalGeneration.from_pretrained(
17
+ MODEL_ID,
18
+ trust_remote_code=True,
19
+ torch_dtype=torch.float16
20
+ ).to("cuda").eval()
21
+ processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
22
+
23
+ DESCRIPTION = "[Qwen2-VL-2B Demo](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct)"
24
+
25
+ image_extensions = Image.registered_extensions()
26
+ video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
27
+
28
+
29
+ def identify_and_save_blob(blob_path):
30
+ """Identifies if the blob is an image or video and saves it accordingly."""
31
+ try:
32
+ with open(blob_path, 'rb') as file:
33
+ blob_content = file.read()
34
+
35
+ # Try to identify if it's an image
36
+ try:
37
+ Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
38
+ extension = ".png" # Default to PNG for saving
39
+ media_type = "image"
40
+ except (IOError, SyntaxError):
41
+ # If it's not a valid image, assume it's a video
42
+ extension = ".mp4" # Default to MP4 for saving
43
+ media_type = "video"
44
+
45
+ # Create a unique filename
46
+ filename = f"temp_{uuid.uuid4()}_media{extension}"
47
+ with open(filename, "wb") as f:
48
+ f.write(blob_content)
49
+
50
+ return filename, media_type
51
+
52
+ except FileNotFoundError:
53
+ raise ValueError(f"The file {blob_path} was not found.")
54
+ except Exception as e:
55
+ raise ValueError(f"An error occurred while processing the file: {e}")
56
+
57
+
58
+ @spaces.GPU
59
+ def qwen_inference(media_input, text_input=None):
60
+ if isinstance(media_input, str): # If it's a filepath
61
+ media_path = media_input
62
+ if media_path.endswith(tuple([i for i, f in image_extensions.items()])):
63
+ media_type = "image"
64
+ elif media_path.endswith(video_extensions):
65
+ media_type = "video"
66
+ else:
67
+ try:
68
+ media_path, media_type = identify_and_save_blob(media_input)
69
+ print(media_path, media_type)
70
+ except Exception as e:
71
+ print(e)
72
+ raise ValueError(
73
+ "Unsupported media type. Please upload an image or video."
74
+ )
75
+
76
+
77
+ print(media_path)
78
+
79
+ messages = [
80
+ {
81
+ "role": "user",
82
+ "content": [
83
+ {
84
+ "type": media_type,
85
+ media_type: media_path,
86
+ **({"fps": 8.0} if media_type == "video" else {}),
87
+ },
88
+ {"type": "text", "text": text_input},
89
+ ],
90
+ }
91
+ ]
92
+
93
+ text = processor.apply_chat_template(
94
+ messages, tokenize=False, add_generation_prompt=True
95
+ )
96
+ image_inputs, video_inputs = process_vision_info(messages)
97
+ inputs = processor(
98
+ text=[text],
99
+ images=image_inputs,
100
+ videos=video_inputs,
101
+ padding=True,
102
+ return_tensors="pt",
103
+ ).to("cuda")
104
+
105
+ streamer = TextIteratorStreamer(
106
+ processor, skip_prompt=True, **{"skip_special_tokens": True}
107
+ )
108
+ generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
109
+
110
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
111
+ thread.start()
112
+
113
+ buffer = ""
114
+ for new_text in streamer:
115
+ buffer += new_text
116
+ yield buffer
117
+
118
+ css = """
119
+ #output {
120
+ height: 500px;
121
+ overflow: auto;
122
+ border: 1px solid #ccc;
123
+ }
124
+ """
125
+
126
+ with gr.Blocks(css=css) as demo:
127
+ gr.Markdown(DESCRIPTION)
128
+
129
+ with gr.Tab(label="Image/Video Input"):
130
+ with gr.Row():
131
+ with gr.Column():
132
+ input_media = gr.File(
133
+ label="Upload Image or Video", type="filepath"
134
+ )
135
+ text_input = gr.Textbox(label="Question")
136
+ submit_btn = gr.Button(value="Submit")
137
+ with gr.Column():
138
+ output_text = gr.Textbox(label="Output Text")
139
+
140
+ submit_btn.click(
141
+ qwen_inference, [input_media, text_input], [output_text]
142
+ )
143
+
144
+ demo.launch(debug=True)
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ numpy==1.24.4
2
+ Pillow==10.3.0
3
+ Requests==2.31.0
4
+ torch
5
+ torchvision
6
+ git+https://github.com/huggingface/transformers.git
7
+ accelerate
8
+ qwen-vl-utils
9
+ av