beyoru commited on
Commit
af4b5bf
·
verified ·
1 Parent(s): 1bb1cc1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +141 -0
app.py CHANGED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer
3
+ import onnxruntime as ort
4
+ import numpy as np
5
+ import string
6
+ from huggingface_hub import InferenceClient
7
+
8
+ # Initialize Qwen client
9
+ qwen_client = InferenceClient("EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0")
10
+
11
+ # Model and ONNX setup
12
+ HG_MODEL = "livekit/turn-detector"
13
+ ONNX_FILENAME = "model_quantized.onnx"
14
+ PUNCS = string.punctuation.replace("'", "")
15
+ MAX_HISTORY = 4 # Adjusted to use the last 4 messages
16
+ MAX_HISTORY_TOKENS = 512
17
+ EOU_THRESHOLD = 0.5 # Updated threshold to match original
18
+
19
+ # Initialize ONNX model
20
+ tokenizer = AutoTokenizer.from_pretrained(HG_MODEL)
21
+ onnx_session = ort.InferenceSession(ONNX_FILENAME, providers=["CPUExecutionProvider"])
22
+
23
+ # Softmax function
24
+ def softmax(logits):
25
+ exp_logits = np.exp(logits - np.max(logits))
26
+ return exp_logits / np.sum(exp_logits)
27
+
28
+ # Normalize text
29
+ def normalize_text(text):
30
+ def strip_puncs(text):
31
+ return text.translate(str.maketrans("", "", PUNCS))
32
+ return " ".join(strip_puncs(text).lower().split())
33
+
34
+ # Format chat context
35
+ def format_chat_ctx(chat_ctx):
36
+ new_chat_ctx = []
37
+ for msg in chat_ctx:
38
+ if msg["role"] in ("user", "assistant"):
39
+ content = normalize_text(msg["content"])
40
+ if content:
41
+ msg["content"] = content
42
+ new_chat_ctx.append(msg)
43
+
44
+ # Tokenize with chat template
45
+ convo_text = tokenizer.apply_chat_template(
46
+ new_chat_ctx, add_generation_prompt=False, add_special_tokens=False, tokenize=False
47
+ )
48
+
49
+ # Remove EOU token from the current utterance
50
+ ix = convo_text.rfind("<|im_end|>")
51
+ return convo_text[:ix]
52
+
53
+ # Calculate EOU probability
54
+ def calculate_eou(chat_ctx, session):
55
+ formatted_text = format_chat_ctx(chat_ctx[-MAX_HISTORY:]) # Use the last 4 messages
56
+ inputs = tokenizer(
57
+ formatted_text,
58
+ return_tensors="np",
59
+ truncation=True,
60
+ max_length=MAX_HISTORY_TOKENS,
61
+ )
62
+ input_ids = np.array(inputs["input_ids"], dtype=np.int64)
63
+ outputs = session.run(["logits"], {"input_ids": input_ids})
64
+ logits = outputs[0][0, -1, :]
65
+ probs = softmax(logits)
66
+ eou_token_id = tokenizer.encode("<|im_end|>")[-1]
67
+ return probs[eou_token_id]
68
+
69
+ # Read system message from file
70
+ with open("character/herta.txt", "r") as f:
71
+ system_message = f.read()
72
+
73
+ # Respond function
74
+ def respond(
75
+ message,
76
+ history: list[tuple[str, str]],
77
+ max_tokens,
78
+ temperature,
79
+ top_p,
80
+ ):
81
+ # Keep the last 4 conversation pairs (user-assistant)
82
+ messages = [{"role": "system", "content": system_message}]
83
+
84
+ for val in history[-10:]: # Only use the last 4 pairs
85
+ if val[0]:
86
+ messages.append({"role": "user", "content": val[0]})
87
+ if val[1]:
88
+ messages.append({"role": "assistant", "content": val[1]})
89
+
90
+ # Add the new user message to the context
91
+ messages.append({"role": "user", "content": message})
92
+
93
+ # Calculate EOU probability
94
+ eou_prob = calculate_eou(messages, onnx_session)
95
+ print(f"EOU Probability: {eou_prob}") # Debug output
96
+
97
+ # If EOU is below the threshold, ask for more input
98
+ if eou_prob < EOU_THRESHOLD:
99
+ yield "[Waiting for user to continue input...]"
100
+ return
101
+
102
+ # Generate response with Qwen
103
+ response = ""
104
+ for message in qwen_client.chat_completion(
105
+ messages,
106
+ max_tokens=max_tokens,
107
+ stream=True,
108
+ temperature=temperature,
109
+ top_p=top_p,
110
+ ):
111
+ token = message.choices[0].delta.content
112
+ response += token
113
+ yield response
114
+
115
+ print(f"Generated response: {response}")
116
+
117
+
118
+ # Gradio interface
119
+ demo = gr.ChatInterface(
120
+ respond,
121
+ # additional_inputs=[
122
+ # # Commented out to disable user modification of the system message
123
+ # # gr.Textbox(value="You are an assistant.", label="System message"),
124
+ # gr.Slider(minimum=1, maximum=4096, value=256, step=1, label="Max new tokens"),
125
+ # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
126
+ # gr.Slider(
127
+ # minimum=0.1,
128
+ # maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
129
+ # ),
130
+ # ],
131
+ theme = gr.themes.Default().set(
132
+ button_primary_background_fill="#FF0000",
133
+ button_primary_background_fill_dark="#AAAAAA",
134
+ button_primary_border="*button_primary_background_fill",
135
+ button_primary_border_dark="*button_primary_background_fill_dark",
136
+ )
137
+
138
+ )
139
+
140
+ if __name__ == "__main__":
141
+ demo.launch()