Update app.py
Browse files
app.py
CHANGED
@@ -2,115 +2,80 @@ import gradio as gr
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import string
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
content = self._normalize_text(msg["content"])
|
32 |
-
if content:
|
33 |
-
normalized_messages.append({
|
34 |
-
"role": msg["role"],
|
35 |
-
"content": content
|
36 |
-
})
|
37 |
-
|
38 |
-
# Apply chat template without generation prompt
|
39 |
-
conversation = self.tokenizer.apply_chat_template(
|
40 |
-
normalized_messages,
|
41 |
-
add_generation_prompt=False,
|
42 |
-
add_special_tokens=False,
|
43 |
-
tokenize=False
|
44 |
-
)
|
45 |
-
|
46 |
-
# Remove the EOU token from current utterance if present
|
47 |
-
ix = conversation.rfind("<|im_end|>")
|
48 |
-
if ix >= 0:
|
49 |
-
conversation = conversation[:ix]
|
50 |
-
|
51 |
-
return conversation
|
52 |
-
|
53 |
-
def compute_eou_probability(self, messages: list[dict]) -> float:
|
54 |
-
"""Compute the probability of end of utterance."""
|
55 |
-
# Format the conversation
|
56 |
-
conversation = self._format_chat_context(messages)
|
57 |
-
|
58 |
-
# Tokenize with proper truncation
|
59 |
-
inputs = self.tokenizer(
|
60 |
-
conversation,
|
61 |
-
add_special_tokens=False,
|
62 |
-
return_tensors="pt",
|
63 |
-
max_length=MAX_HISTORY_TOKENS,
|
64 |
-
truncation=True,
|
65 |
-
truncation_side="left"
|
66 |
-
)
|
67 |
-
|
68 |
-
# Get model predictions
|
69 |
-
with torch.no_grad():
|
70 |
-
outputs = self.model(**inputs)
|
71 |
-
|
72 |
-
# Get logits for the last token
|
73 |
-
logits = outputs.logits[0, -1, :]
|
74 |
-
|
75 |
-
# Compute softmax properly
|
76 |
-
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
77 |
-
|
78 |
-
# Get probability for EOU token
|
79 |
-
eou_probability = probabilities[self.eou_token_id].item()
|
80 |
-
|
81 |
-
return eou_probability
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
def respond(
|
84 |
-
message
|
85 |
history: list[tuple[str, str]],
|
86 |
-
system_message
|
87 |
-
max_tokens
|
88 |
-
temperature
|
89 |
-
top_p
|
90 |
-
eou_threshold: float = 0.2,
|
91 |
-
)
|
92 |
-
# Initialize clients
|
93 |
-
eou_detector = EOUDetector()
|
94 |
-
client = InferenceClient("Qwen/Qwen2.5-3B-Instruct")
|
95 |
-
|
96 |
-
# Prepare messages
|
97 |
messages = [{"role": "system", "content": system_message}]
|
98 |
-
for user_msg, assistant_msg in history:
|
99 |
-
if user_msg:
|
100 |
-
messages.append({"role": "user", "content": user_msg})
|
101 |
-
if assistant_msg:
|
102 |
-
messages.append({"role": "assistant", "content": assistant_msg})
|
103 |
-
|
104 |
-
# Add current message
|
105 |
-
messages.append({"role": "user", "content": message})
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
110 |
|
|
|
|
|
|
|
|
|
111 |
if eou_probability >= eou_threshold:
|
112 |
-
#
|
|
|
|
|
113 |
response = ""
|
|
|
114 |
for message in client.chat_completion(
|
115 |
messages,
|
116 |
max_tokens=max_tokens,
|
@@ -122,19 +87,29 @@ def respond(
|
|
122 |
response += token
|
123 |
yield response
|
124 |
else:
|
|
|
125 |
yield "Waiting for user to finish... Please continue."
|
|
|
126 |
|
127 |
-
# Gradio
|
128 |
demo = gr.ChatInterface(
|
129 |
respond,
|
130 |
additional_inputs=[
|
131 |
-
gr.Textbox(value="You are
|
132 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
133 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
134 |
-
gr.Slider(
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
],
|
137 |
)
|
138 |
|
139 |
if __name__ == "__main__":
|
140 |
-
demo.launch()
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
+
|
6 |
+
# Load Inference Client for the response model
|
7 |
+
client = InferenceClient("Qwen/Qwen2.5-3B-Instruct")
|
8 |
+
|
9 |
+
# Load tokenizer and model for the EOU detection
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("livekit/turn-detector")
|
11 |
+
model = AutoModelForCausalLM.from_pretrained("livekit/turn-detector")
|
12 |
+
|
13 |
+
import re
|
14 |
import string
|
15 |
|
16 |
+
def normalize_text(text: str) -> str:
|
17 |
+
"""Chuẩn hóa văn bản bằng cách loại bỏ dấu câu, khoảng trắng thừa và chuyển về chữ thường."""
|
18 |
+
text = text.strip().lower() # Chuyển về chữ thường và xóa khoảng trắng đầu/cuối
|
19 |
+
text = re.sub(f"[{re.escape(string.punctuation)}]", "", text) # Loại bỏ dấu câu
|
20 |
+
return re.sub(r"\s+", " ", text) # Loại bỏ khoảng trắng thừa
|
21 |
+
|
22 |
+
def compute_eou_probability(chat_ctx: list[dict[str, str]], max_tokens: int = 512) -> float:
|
23 |
+
"""Compute the probability of End of Utterance (EOU) after normalizing text."""
|
24 |
+
conversation = ["Assistant ready to help."] # Add system message directly
|
25 |
+
|
26 |
+
for msg in chat_ctx:
|
27 |
+
content = msg.get("content", "")
|
28 |
+
if content:
|
29 |
+
normalized_content = normalize_text(content) # Chuẩn hóa văn bản
|
30 |
+
conversation.append(normalized_content)
|
31 |
+
|
32 |
+
# Tokenize the conversation
|
33 |
+
inputs = tokenizer(
|
34 |
+
conversation, padding=True, truncation=True, max_length=max_tokens, return_tensors="pt"
|
35 |
+
)
|
36 |
+
|
37 |
+
with torch.no_grad():
|
38 |
+
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
logits = outputs.logits[0, -1, :]
|
41 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
42 |
+
|
43 |
+
# Get EOU token probability
|
44 |
+
eou_token_id = tokenizer.encode("<|im_end|>")[0]
|
45 |
+
if eou_token_id not in tokenizer.get_vocab().values():
|
46 |
+
raise ValueError("EOU token '<|im_end|>' not found in tokenizer vocabulary.")
|
47 |
+
|
48 |
+
return probabilities[eou_token_id].item()
|
49 |
+
|
50 |
+
|
51 |
+
# Respond function with EOU checking logic
|
52 |
def respond(
|
53 |
+
message,
|
54 |
history: list[tuple[str, str]],
|
55 |
+
system_message,
|
56 |
+
max_tokens,
|
57 |
+
temperature,
|
58 |
+
top_p,
|
59 |
+
eou_threshold: float = 0.2, # Default EOU threshold
|
60 |
+
):
|
|
|
|
|
|
|
|
|
|
|
61 |
messages = [{"role": "system", "content": system_message}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
for val in history:
|
64 |
+
if val[0]:
|
65 |
+
messages.append({"role": "user", "content": val[0]})
|
66 |
+
if val[1]:
|
67 |
+
messages.append({"role": "assistant", "content": val[1]})
|
68 |
|
69 |
+
# Compute EOU probability before responding
|
70 |
+
eou_probability = compute_eou_probability(messages, max_tokens=max_tokens)
|
71 |
+
console.log(eou_probability)
|
72 |
+
# Only respond if EOU probability exceeds threshold
|
73 |
if eou_probability >= eou_threshold:
|
74 |
+
# Prepare message for assistant response
|
75 |
+
messages.append({"role": "user", "content": message})
|
76 |
+
|
77 |
response = ""
|
78 |
+
|
79 |
for message in client.chat_completion(
|
80 |
messages,
|
81 |
max_tokens=max_tokens,
|
|
|
87 |
response += token
|
88 |
yield response
|
89 |
else:
|
90 |
+
# Let the user continue typing if the EOU probability is low
|
91 |
yield "Waiting for user to finish... Please continue."
|
92 |
+
print("Waiting for user to finish... Please continue.")
|
93 |
|
94 |
+
# Gradio UI
|
95 |
demo = gr.ChatInterface(
|
96 |
respond,
|
97 |
additional_inputs=[
|
98 |
+
gr.Textbox(value="You are helpful assistant", label="System message"),
|
99 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
100 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
101 |
+
gr.Slider(
|
102 |
+
minimum=0.1,
|
103 |
+
maximum=1.0,
|
104 |
+
value=0.95,
|
105 |
+
step=0.05,
|
106 |
+
label="Top-p (nucleus sampling)",
|
107 |
+
),
|
108 |
+
gr.Slider(
|
109 |
+
minimum=0.0, maximum=1.0, value=0.7, step=0.05, label="EOU Threshold"
|
110 |
+
), # Add EOU threshold slider
|
111 |
],
|
112 |
)
|
113 |
|
114 |
if __name__ == "__main__":
|
115 |
+
demo.launch()
|