import gradio as gr from transformers import AutoTokenizer import onnxruntime as ort import numpy as np import string from huggingface_hub import InferenceClient import os # Initialize Qwen client qwen_client = InferenceClient("deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B") # Model and ONNX setup HG_MODEL = "livekit/turn-detector" ONNX_FILENAME = "model_quantized.onnx" PUNCS = string.punctuation.replace("'", "") MAX_HISTORY = 4 MAX_HISTORY_TOKENS = 512 EOU_THRESHOLD = 0.5 # Initialize ONNX model tokenizer = AutoTokenizer.from_pretrained(HG_MODEL) onnx_session = ort.InferenceSession(ONNX_FILENAME, providers=["CPUExecutionProvider"]) def softmax(logits): exp_logits = np.exp(logits - np.max(logits)) return exp_logits / np.sum(exp_logits) def normalize_text(text): def strip_puncs(text): return text.translate(str.maketrans("", "", PUNCS)) return " ".join(strip_puncs(text).lower().split()) def format_chat_ctx(chat_ctx): new_chat_ctx = [] for msg in chat_ctx: if msg["role"] in ("user", "assistant"): content = normalize_text(msg["content"]) if content: msg["content"] = content new_chat_ctx.append(msg) convo_text = tokenizer.apply_chat_template( new_chat_ctx, add_generation_prompt=False, add_special_tokens=False, tokenize=False ) ix = convo_text.rfind("<|im_end|>") return convo_text[:ix] def calculate_eou(chat_ctx, session): formatted_text = format_chat_ctx(chat_ctx[-MAX_HISTORY:]) inputs = tokenizer( formatted_text, return_tensors="np", truncation=True, max_length=MAX_HISTORY_TOKENS, ) input_ids = np.array(inputs["input_ids"], dtype=np.int64) outputs = session.run(["logits"], {"input_ids": input_ids}) logits = outputs[0][0, -1, :] probs = softmax(logits) eou_token_id = tokenizer.encode("<|im_end|>")[-1] return probs[eou_token_id] def respond( message, history: list[tuple[str, str]], max_tokens=256, temperature=0.7, top_p=0.95, ): messages = [{"role": "system", "content": os.environ.get("CHARACTER_DESC", "You are a helpful assistant.")}] for val in history[-MAX_HISTORY:]: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) eou_prob = calculate_eou(messages, onnx_session) if eou_prob < EOU_THRESHOLD: yield "[Wait... Keep typing...]" return # Generate response incrementally and yield each token accumulated_response = "" # Corrected the chat completions method call for chunk in qwen_client.chat.completions.create( messages=messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = chunk.choices[0].delta.content or "" accumulated_response += token yield accumulated_response # Yield accumulated response for live updates print(f"Final response: {accumulated_response}") # Create Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Slider(1, 4096, value=256, label="Max Tokens"), gr.Slider(0.1, 4.0, value=0.7, label="Temperature"), gr.Slider(0.1, 1.0, value=0.95, label="Top-p"), ] ) if __name__ == "__main__": demo.launch()