import gradio as gr from transformers import AutoTokenizer import onnxruntime as ort import numpy as np import string from huggingface_hub import InferenceClient import os client = InferenceClient(api_key=os.environ.get('HF_TOKEN')) # Model and ONNX setup HG_MODEL = "livekit/turn-detector" ONNX_FILENAME = "model_quantized.onnx" PUNCS = string.punctuation.replace("'", "") MAX_HISTORY = 4 # Adjusted to use the last 4 messages MAX_HISTORY_TOKENS = 512 EOU_THRESHOLD = 0.5 # Updated threshold to match original # Initialize ONNX model tokenizer = AutoTokenizer.from_pretrained(HG_MODEL) onnx_session = ort.InferenceSession(ONNX_FILENAME, providers=["CPUExecutionProvider"]) # Softmax function def softmax(logits): exp_logits = np.exp(logits - np.max(logits)) return exp_logits / np.sum(exp_logits) # Normalize text def normalize_text(text): def strip_puncs(text): return text.translate(str.maketrans("", "", PUNCS)) return " ".join(strip_puncs(text).lower().split()) # Format chat context def format_chat_ctx(chat_ctx): new_chat_ctx = [] for msg in chat_ctx: if msg["role"] in ("user", "assistant"): content = normalize_text(msg["content"]) if content: msg["content"] = content new_chat_ctx.append(msg) # Tokenize with chat template convo_text = tokenizer.apply_chat_template( new_chat_ctx, add_generation_prompt=False, add_special_tokens=False, tokenize=False ) # Remove EOU token from the current utterance ix = convo_text.rfind("<|im_end|>") return convo_text[:ix] # Calculate EOU probability def calculate_eou(chat_ctx, session): formatted_text = format_chat_ctx(chat_ctx[-MAX_HISTORY:]) # Use the last 4 messages inputs = tokenizer( formatted_text, return_tensors="np", truncation=True, max_length=MAX_HISTORY_TOKENS, ) input_ids = np.array(inputs["input_ids"], dtype=np.int64) outputs = session.run(["logits"], {"input_ids": input_ids}) logits = outputs[0][0, -1, :] probs = softmax(logits) eou_token_id = tokenizer.encode("<|im_end|>")[-1] return probs[eou_token_id] # Respond function def respond( message, history: list[tuple[str, str]], max_tokens, temperature, top_p, ): # Keep the last 4 conversation pairs (user-assistant) messages = [{"role": "system", "content": os.environ.get("CHARACTER_DESC")}] for val in history[-20:]: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Add the new user message to the context messages.append({"role": "user", "content": message}) # Calculate EOU probability # eou_prob = calculate_eou(messages, onnx_session) # print(f"EOU Probability: {eou_prob}") # Debug output # # If EOU is below the threshold, ask for more input # if eou_prob < EOU_THRESHOLD: # yield "[Waiting for user to continue input...]" # return stream = client.chat.completions.create( model=os.environ.get('MODEL_ID'), messages=messages, temperature = 0.6, max_tokens= 2048, top_p = 0.9, stream=True ) bot_response = "" for chunk in stream: bot_response += chunk.choices[0].delta.content yield bot_response # Gradio interface demo = gr.ChatInterface( respond, # additional_inputs=[ # # Commented out to disable user modification of the system message # # gr.Textbox(value="You are an assistant.", label="System message"), # gr.Slider(minimum=1, maximum=4096, value=256, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" # ), # ], ) if __name__ == "__main__": demo.launch()