Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import AutoModel, AutoProcessor
|
7 |
+
from torch import nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from datasets import load_dataset
|
10 |
+
from torch.utils.data import Dataset, DataLoader
|
11 |
+
import os
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
+
class SDDataset(Dataset):
|
15 |
+
def __init__(self, dataset, processor, model_to_idx, token_to_idx, max_samples=5000):
|
16 |
+
self.dataset = dataset.select(range(min(max_samples, len(dataset))))
|
17 |
+
self.processor = processor
|
18 |
+
self.model_to_idx = model_to_idx
|
19 |
+
self.token_to_idx = token_to_idx
|
20 |
+
|
21 |
+
def __len__(self):
|
22 |
+
return len(self.dataset)
|
23 |
+
|
24 |
+
def __getitem__(self, idx):
|
25 |
+
item = self.dataset[idx]
|
26 |
+
|
27 |
+
# Process image
|
28 |
+
image = Image.open(item['image'])
|
29 |
+
image_inputs = self.processor(images=image, return_tensors="pt")
|
30 |
+
|
31 |
+
# Create model label
|
32 |
+
model_label = torch.zeros(len(self.model_to_idx))
|
33 |
+
model_label[self.model_to_idx[item['model_name']]] = 1
|
34 |
+
|
35 |
+
# Create prompt label (multi-hot encoding)
|
36 |
+
prompt_label = torch.zeros(len(self.token_to_idx))
|
37 |
+
for token in item['prompt'].split():
|
38 |
+
if token in self.token_to_idx:
|
39 |
+
prompt_label[self.token_to_idx[token]] = 1
|
40 |
+
|
41 |
+
return image_inputs, model_label, prompt_label
|
42 |
+
|
43 |
+
class SDRecommenderModel(nn.Module):
|
44 |
+
def __init__(self, florence_model, num_models, vocab_size):
|
45 |
+
super().__init__()
|
46 |
+
self.florence = florence_model
|
47 |
+
self.model_head = nn.Linear(florence_model.config.hidden_size, num_models)
|
48 |
+
self.prompt_head = nn.Linear(florence_model.config.hidden_size, vocab_size)
|
49 |
+
|
50 |
+
def forward(self, image_features):
|
51 |
+
# Get Florence embeddings
|
52 |
+
features = self.florence.get_image_features(image_features)
|
53 |
+
|
54 |
+
# Generate model and prompt recommendations
|
55 |
+
model_logits = self.model_head(features)
|
56 |
+
prompt_logits = self.prompt_head(features)
|
57 |
+
|
58 |
+
return model_logits, prompt_logits
|
59 |
+
|
60 |
+
class SDRecommender:
|
61 |
+
def __init__(self, max_samples=1000):
|
62 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
63 |
+
print(f"Using device: {self.device}")
|
64 |
+
|
65 |
+
# Load Florence model and processor
|
66 |
+
self.processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large")
|
67 |
+
self.florence = AutoModel.from_pretrained("microsoft/Florence-2-large")
|
68 |
+
|
69 |
+
# Load dataset
|
70 |
+
print("Loading dataset...")
|
71 |
+
self.dataset = load_dataset("thefcraft/civitai-stable-diffusion-337k", split="train")
|
72 |
+
self.dataset = self.dataset.select(range(min(max_samples, len(self.dataset))))
|
73 |
+
print(f"Using {len(self.dataset)} samples from dataset")
|
74 |
+
|
75 |
+
# Create vocabularies for models and tokens
|
76 |
+
self.model_to_idx = self._create_model_vocab()
|
77 |
+
self.token_to_idx = self._create_prompt_vocab()
|
78 |
+
|
79 |
+
# Initialize the recommendation model
|
80 |
+
self.model = SDRecommenderModel(
|
81 |
+
self.florence,
|
82 |
+
len(self.model_to_idx),
|
83 |
+
len(self.token_to_idx)
|
84 |
+
).to(self.device)
|
85 |
+
|
86 |
+
# Load trained weights if available
|
87 |
+
if os.path.exists("recommender_model.pth"):
|
88 |
+
self.model.load_state_dict(torch.load("recommender_model.pth"))
|
89 |
+
print("Loaded trained model weights")
|
90 |
+
self.model.eval()
|
91 |
+
|
92 |
+
def _create_model_vocab(self):
|
93 |
+
print("Creating model vocabulary...")
|
94 |
+
models = set()
|
95 |
+
for item in self.dataset:
|
96 |
+
models.add(item["model_name"])
|
97 |
+
return {model: idx for idx, model in enumerate(sorted(models))}
|
98 |
+
|
99 |
+
def _create_prompt_vocab(self):
|
100 |
+
print("Creating prompt vocabulary...")
|
101 |
+
tokens = set()
|
102 |
+
for item in self.dataset:
|
103 |
+
for token in item["prompt"].split():
|
104 |
+
tokens.add(token)
|
105 |
+
return {token: idx for idx, token in enumerate(sorted(tokens))}
|
106 |
+
|
107 |
+
def train(self, num_epochs=5, batch_size=8, learning_rate=1e-4):
|
108 |
+
print("Starting training...")
|
109 |
+
|
110 |
+
# Create dataset and dataloader
|
111 |
+
train_dataset = SDDataset(
|
112 |
+
self.dataset,
|
113 |
+
self.processor,
|
114 |
+
self.model_to_idx,
|
115 |
+
self.token_to_idx
|
116 |
+
)
|
117 |
+
train_loader = DataLoader(
|
118 |
+
train_dataset,
|
119 |
+
batch_size=batch_size,
|
120 |
+
shuffle=True,
|
121 |
+
num_workers=2
|
122 |
+
)
|
123 |
+
|
124 |
+
# Setup optimizer
|
125 |
+
optimizer = torch.optim.AdamW(self.model.parameters(), lr=learning_rate)
|
126 |
+
|
127 |
+
# Training loop
|
128 |
+
self.model.train()
|
129 |
+
for epoch in range(num_epochs):
|
130 |
+
total_loss = 0
|
131 |
+
progress_bar = tqdm(train_loader, desc=f"Epoch {epoch+1}/{num_epochs}")
|
132 |
+
|
133 |
+
for batch_idx, (images, model_labels, prompt_labels) in enumerate(progress_bar):
|
134 |
+
# Move everything to device
|
135 |
+
images = images.to(self.device)
|
136 |
+
model_labels = model_labels.to(self.device)
|
137 |
+
prompt_labels = prompt_labels.to(self.device)
|
138 |
+
|
139 |
+
# Forward pass
|
140 |
+
model_logits, prompt_logits = self.model(images)
|
141 |
+
|
142 |
+
# Calculate loss
|
143 |
+
model_loss = F.cross_entropy(model_logits, model_labels)
|
144 |
+
prompt_loss = F.binary_cross_entropy_with_logits(prompt_logits, prompt_labels)
|
145 |
+
loss = model_loss + prompt_loss
|
146 |
+
|
147 |
+
# Backward pass
|
148 |
+
optimizer.zero_grad()
|
149 |
+
loss.backward()
|
150 |
+
optimizer.step()
|
151 |
+
|
152 |
+
# Update progress
|
153 |
+
total_loss += loss.item()
|
154 |
+
progress_bar.set_postfix({"loss": total_loss / (batch_idx + 1)})
|
155 |
+
|
156 |
+
# Save trained model
|
157 |
+
torch.save(self.model.state_dict(), "recommender_model.pth")
|
158 |
+
print("Training completed and model saved")
|
159 |
+
|
160 |
+
def get_recommendations(self, image):
|
161 |
+
# Convert uploaded image to PIL if needed
|
162 |
+
if not isinstance(image, Image.Image):
|
163 |
+
image = Image.open(image)
|
164 |
+
|
165 |
+
# Process image
|
166 |
+
inputs = self.processor(images=image, return_tensors="pt").to(self.device)
|
167 |
+
|
168 |
+
# Get model predictions
|
169 |
+
self.model.eval()
|
170 |
+
with torch.no_grad():
|
171 |
+
model_logits, prompt_logits = self.model(inputs)
|
172 |
+
|
173 |
+
# Get top 5 model recommendations
|
174 |
+
model_probs = F.softmax(model_logits, dim=-1)
|
175 |
+
top_models = torch.topk(model_probs, k=5)
|
176 |
+
model_recommendations = [
|
177 |
+
(list(self.model_to_idx.keys())[idx.item()], prob.item())
|
178 |
+
for prob, idx in zip(top_models.values[0], top_models.indices[0])
|
179 |
+
]
|
180 |
+
|
181 |
+
# Get top tokens for prompt recommendations
|
182 |
+
prompt_probs = F.softmax(prompt_logits, dim=-1)
|
183 |
+
top_tokens = torch.topk(prompt_probs, k=20)
|
184 |
+
recommended_tokens = [
|
185 |
+
list(self.token_to_idx.keys())[idx.item()]
|
186 |
+
for idx in top_tokens.indices[0]
|
187 |
+
]
|
188 |
+
|
189 |
+
# Create 5 prompt combinations
|
190 |
+
prompt_recommendations = [
|
191 |
+
" ".join(np.random.choice(recommended_tokens, size=8, replace=False))
|
192 |
+
for _ in range(5)
|
193 |
+
]
|
194 |
+
|
195 |
+
return (
|
196 |
+
"\n".join(f"{model} (confidence: {conf:.2f})" for model, conf in model_recommendations),
|
197 |
+
"\n".join(prompt_recommendations)
|
198 |
+
)
|
199 |
+
|
200 |
+
# Create Gradio interface
|
201 |
+
def create_interface():
|
202 |
+
recommender = SDRecommender(max_samples=5000)
|
203 |
+
|
204 |
+
# Train the model if no trained weights exist
|
205 |
+
if not os.path.exists("recommender_model.pth"):
|
206 |
+
recommender.train()
|
207 |
+
|
208 |
+
def process_image(image):
|
209 |
+
model_recs, prompt_recs = recommender.get_recommendations(image)
|
210 |
+
return model_recs, prompt_recs
|
211 |
+
|
212 |
+
interface = gr.Interface(
|
213 |
+
fn=process_image,
|
214 |
+
inputs=gr.Image(type="pil"),
|
215 |
+
outputs=[
|
216 |
+
gr.Textbox(label="Recommended Models"),
|
217 |
+
gr.Textbox(label="Recommended Prompts")
|
218 |
+
],
|
219 |
+
title="Stable Diffusion Model & Prompt Recommender",
|
220 |
+
description="Upload an AI-generated image to get model and prompt recommendations",
|
221 |
+
)
|
222 |
+
|
223 |
+
return interface
|
224 |
+
|
225 |
+
# Launch the interface
|
226 |
+
if __name__ == "__main__":
|
227 |
+
interface = create_interface()
|
228 |
+
interface.launch()
|