Spaces:
Sleeping
Sleeping
import gradio as gr | |
import spaces | |
import torch | |
import time | |
import numpy as np | |
print(f"torch_version: {torch.__version__}") | |
# Define two matrices using NumPy arrays | |
#A = np.array([[1, 2], [3, 4]]) | |
#B = np.array([[5, 6], [7, 8]]) | |
# Define large matrices | |
A = np.random.rand(10000, 10000) # Random 10000x10000 matrix | |
B = np.random.rand(10000, 10000) | |
# Start the timer | |
start_time = time.time() | |
# Perform matrix multiplication | |
result = np.dot(A, B) | |
# End the timer | |
end_time = time.time() | |
# Calculate and print the time taken | |
print(f"Time taken for matrix multiplication with NumPy: {end_time - start_time:.6f} seconds") | |
# Define two matrices | |
#A = torch.tensor([[1, 2], [3, 4]]) | |
#B = torch.tensor([[5, 6], [7, 8]]) | |
# Define large matrices | |
A = torch.rand(10000, 10000) # Random 10000x10000 matrix | |
B = torch.rand(10000, 10000) | |
# Start the timer | |
start_time = time.time() | |
# Perform matrix multiplication | |
result = torch.matmul(A, B) | |
# End the timer | |
end_time = time.time() | |
# Calculate and print the time taken | |
print(f"Time taken for matrix multiplication with PyTorch: {end_time - start_time:.6f} seconds") | |
def zeroGPU_test(text): | |
# Define two matrices | |
#A = torch.tensor([[1, 2], [3, 4]]) | |
#B = torch.tensor([[5, 6], [7, 8]]) | |
# Define large matrices | |
A = torch.rand(10000, 10000).to('cuda') # Random 10000x10000 matrix | |
B = torch.rand(10000, 10000).to('cuda') | |
# Start the timer | |
start_time = time.time() | |
# Perform matrix multiplication | |
result = torch.matmul(A, B) | |
# End the timer | |
end_time = time.time() | |
print(f"Time taken for matrix multiplication with GPU: {end_time - start_time:.6f} seconds") | |
return f"Time: {end_time - start_time:.6f} seconds" | |
demo = gr.Interface(fn=zeroGPU_test, inputs=gr.Text(), outputs=gr.Text()) | |
demo.launch() | |