|
import streamlit as st |
|
from PIL import Image |
|
from datetime import time as t |
|
import time |
|
|
|
from operator import itemgetter |
|
import os |
|
import json |
|
import getpass |
|
|
|
from langchain.vectorstores import Pinecone |
|
from langchain.embeddings import OpenAIEmbeddings |
|
import pinecone |
|
|
|
|
|
from results import results_agent |
|
from filter import filter_agent |
|
from reranker import reranker |
|
from utils import build_filter |
|
|
|
OPENAI_API = st.secrets["OPENAI_API"] |
|
PINECONE_API = st.secrets["PINECONE_API"] |
|
|
|
pinecone.init( |
|
api_key= PINECONE_API, |
|
environment="gcp-starter" |
|
) |
|
index_name = "use-class-db" |
|
|
|
embeddings = OpenAIEmbeddings(openai_api_key = OPENAI_API) |
|
|
|
index = pinecone.Index(index_name) |
|
|
|
k = 5 |
|
|
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
|
|
st.title("USC GPT - Find the perfect class") |
|
|
|
class_time = st.slider( |
|
"Filter Class Times:", |
|
value=(t(11, 30), t(12, 45))) |
|
|
|
|
|
|
|
units = st.slider( |
|
"Number of units", |
|
1, 4, |
|
value = (1, 4) |
|
) |
|
|
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.markdown(message["content"]) |
|
|
|
if prompt := st.chat_input("What kind of class are you looking for?"): |
|
|
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
|
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
|
|
|
|
response = filter_agent(prompt, OPENAI_API) |
|
query = response |
|
|
|
response = index.query( |
|
vector= embeddings.embed_query(query), |
|
|
|
top_k=5, |
|
include_metadata=True |
|
) |
|
|
|
response = reranker(query, response) |
|
|
|
result_query = 'Original Query:' + query + 'Query Results:' + str(response) |
|
|
|
print(results_agent(result_query, OPENAI_API)) |
|
|
|
|
|
|
|
with st.chat_message("assistant"): |
|
message_placeholder = st.empty() |
|
full_response = "" |
|
assistant_response = "Hello there! How can I assist you today?" |
|
|
|
for chunk in assistant_response.split(): |
|
full_response += chunk + " " |
|
time.sleep(0.05) |
|
|
|
message_placeholder.markdown(full_response + "β") |
|
message_placeholder.markdown(full_response) |
|
|
|
st.session_state.messages.append({"role": "assistant", "content": full_response}) |