Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,7 @@ import pinecone
|
|
16 |
from results import results_agent
|
17 |
from filter import filter_agent
|
18 |
from reranker import reranker
|
19 |
-
from utils import build_filter
|
20 |
from router import routing_agent
|
21 |
|
22 |
OPENAI_API = st.secrets["OPENAI_API"]
|
@@ -44,8 +44,7 @@ class_time = st.slider(
|
|
44 |
|
45 |
units = st.slider(
|
46 |
"Number of units",
|
47 |
-
1, 4,
|
48 |
-
value = (1, 4)
|
49 |
)
|
50 |
|
51 |
days = st.multiselect("What days are you free?",
|
@@ -57,6 +56,8 @@ days = st.multiselect("What days are you free?",
|
|
57 |
assistant = st.chat_message("assistant")
|
58 |
initial_message = "How can I help you today?"
|
59 |
|
|
|
|
|
60 |
def get_rag_results(prompt):
|
61 |
'''
|
62 |
1. Remove filters from the prompt to optimize success of the RAG-based step.
|
@@ -86,13 +87,15 @@ def get_rag_results(prompt):
|
|
86 |
## Query the pinecone database
|
87 |
response = index.query(
|
88 |
vector = embeddings.embed_query(query),
|
89 |
-
top_k =
|
90 |
filter = query_filter,
|
91 |
include_metadata = True
|
92 |
)
|
|
|
|
|
93 |
response = reranker(query, response) # BERT cross encoder for ranking
|
94 |
|
95 |
-
return response
|
96 |
|
97 |
|
98 |
|
@@ -120,8 +123,8 @@ if prompt := st.chat_input("What kind of class are you looking for?"):
|
|
120 |
|
121 |
if route == "1":
|
122 |
## Option for accessing Vector DB
|
123 |
-
rag_response = get_rag_results(prompt)
|
124 |
-
result_query = 'Original Query:' + prompt + 'Query Results:' + str(rag_response)
|
125 |
assistant_response = results_agent(result_query, OPENAI_API)
|
126 |
else:
|
127 |
## Option if not accessing Database
|
|
|
16 |
from results import results_agent
|
17 |
from filter import filter_agent
|
18 |
from reranker import reranker
|
19 |
+
from utils import build_filter, clean_pinecone
|
20 |
from router import routing_agent
|
21 |
|
22 |
OPENAI_API = st.secrets["OPENAI_API"]
|
|
|
44 |
|
45 |
units = st.slider(
|
46 |
"Number of units",
|
47 |
+
1, 4, 4
|
|
|
48 |
)
|
49 |
|
50 |
days = st.multiselect("What days are you free?",
|
|
|
56 |
assistant = st.chat_message("assistant")
|
57 |
initial_message = "How can I help you today?"
|
58 |
|
59 |
+
|
60 |
+
|
61 |
def get_rag_results(prompt):
|
62 |
'''
|
63 |
1. Remove filters from the prompt to optimize success of the RAG-based step.
|
|
|
87 |
## Query the pinecone database
|
88 |
response = index.query(
|
89 |
vector = embeddings.embed_query(query),
|
90 |
+
top_k = 45,
|
91 |
filter = query_filter,
|
92 |
include_metadata = True
|
93 |
)
|
94 |
+
|
95 |
+
response, additional_metadata = clean_pinecone(response)
|
96 |
response = reranker(query, response) # BERT cross encoder for ranking
|
97 |
|
98 |
+
return response, additional_metadata
|
99 |
|
100 |
|
101 |
|
|
|
123 |
|
124 |
if route == "1":
|
125 |
## Option for accessing Vector DB
|
126 |
+
rag_response, additional_metadata = get_rag_results(prompt)
|
127 |
+
result_query = 'Original Query:' + prompt + 'Query Results:' + str(rag_response) + '\n Additional Class Times:' + str(additional_metadata)
|
128 |
assistant_response = results_agent(result_query, OPENAI_API)
|
129 |
else:
|
130 |
## Option if not accessing Database
|