bhulston commited on
Commit
e16b761
·
1 Parent(s): 6e37d5d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -7
app.py CHANGED
@@ -16,7 +16,7 @@ import pinecone
16
  from results import results_agent
17
  from filter import filter_agent
18
  from reranker import reranker
19
- from utils import build_filter
20
  from router import routing_agent
21
 
22
  OPENAI_API = st.secrets["OPENAI_API"]
@@ -44,8 +44,7 @@ class_time = st.slider(
44
 
45
  units = st.slider(
46
  "Number of units",
47
- 1, 4,
48
- value = (1, 4)
49
  )
50
 
51
  days = st.multiselect("What days are you free?",
@@ -57,6 +56,8 @@ days = st.multiselect("What days are you free?",
57
  assistant = st.chat_message("assistant")
58
  initial_message = "How can I help you today?"
59
 
 
 
60
  def get_rag_results(prompt):
61
  '''
62
  1. Remove filters from the prompt to optimize success of the RAG-based step.
@@ -86,13 +87,15 @@ def get_rag_results(prompt):
86
  ## Query the pinecone database
87
  response = index.query(
88
  vector = embeddings.embed_query(query),
89
- top_k = 25,
90
  filter = query_filter,
91
  include_metadata = True
92
  )
 
 
93
  response = reranker(query, response) # BERT cross encoder for ranking
94
 
95
- return response
96
 
97
 
98
 
@@ -120,8 +123,8 @@ if prompt := st.chat_input("What kind of class are you looking for?"):
120
 
121
  if route == "1":
122
  ## Option for accessing Vector DB
123
- rag_response = get_rag_results(prompt)
124
- result_query = 'Original Query:' + prompt + 'Query Results:' + str(rag_response)
125
  assistant_response = results_agent(result_query, OPENAI_API)
126
  else:
127
  ## Option if not accessing Database
 
16
  from results import results_agent
17
  from filter import filter_agent
18
  from reranker import reranker
19
+ from utils import build_filter, clean_pinecone
20
  from router import routing_agent
21
 
22
  OPENAI_API = st.secrets["OPENAI_API"]
 
44
 
45
  units = st.slider(
46
  "Number of units",
47
+ 1, 4, 4
 
48
  )
49
 
50
  days = st.multiselect("What days are you free?",
 
56
  assistant = st.chat_message("assistant")
57
  initial_message = "How can I help you today?"
58
 
59
+
60
+
61
  def get_rag_results(prompt):
62
  '''
63
  1. Remove filters from the prompt to optimize success of the RAG-based step.
 
87
  ## Query the pinecone database
88
  response = index.query(
89
  vector = embeddings.embed_query(query),
90
+ top_k = 45,
91
  filter = query_filter,
92
  include_metadata = True
93
  )
94
+
95
+ response, additional_metadata = clean_pinecone(response)
96
  response = reranker(query, response) # BERT cross encoder for ranking
97
 
98
+ return response, additional_metadata
99
 
100
 
101
 
 
123
 
124
  if route == "1":
125
  ## Option for accessing Vector DB
126
+ rag_response, additional_metadata = get_rag_results(prompt)
127
+ result_query = 'Original Query:' + prompt + 'Query Results:' + str(rag_response) + '\n Additional Class Times:' + str(additional_metadata)
128
  assistant_response = results_agent(result_query, OPENAI_API)
129
  else:
130
  ## Option if not accessing Database