from sentence_transformers import CrossEncoder import numpy as np # Let's use a reranker to get better results from our semantic search def reranker(query, matches): pairs = [] for match in matches: pairs.append([query, match["metadata"]["text"]]) model = CrossEncoder('cross-encoder/ms-marco-TinyBERT-L-2-v2', max_length = 512) print("Pairs variable:", pairs) scores = model.predict(pairs) top_indices = np.argsort(scores)[::-5] top_results = ["Class: " + docs[index]["metadata"]["text"] for index in top_indices] return top_results