File size: 11,442 Bytes
42ae41b
 
 
 
 
 
 
1c313fd
42ae41b
 
 
 
 
 
 
 
1c313fd
42ae41b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c313fd
42ae41b
 
 
 
 
 
1c313fd
42ae41b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c313fd
42ae41b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c313fd
 
 
 
 
42ae41b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c313fd
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from dataclasses import dataclass
from operator import itemgetter
from pathlib import Path
from typing import List, Optional, Dict, Any
import logging
from enum import Enum

import gradio as gr
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.schema import BaseRetriever
from langchain.embeddings.base import Embeddings
from langchain.llms.base import BaseLanguageModel
import PyPDF2
# Install required packages


# Initialize models
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer,  BitsAndBytesConfig
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.llms import HuggingFacePipeline
from transformers import pipeline
from sentence_transformers import SentenceTransformer
device = 'cuda' if torch.cuda.is_available() else 'cpu'
embed_model = HuggingFaceBgeEmbeddings(
    model_name="all-MiniLM-L6-v2",#"dunzhang/stella_en_1.5B_v5",
    model_kwargs={'device': 'cpu'},
    encode_kwargs={'normalize_embeddings': True}
)

model_name = "meta-llama/Llama-3.2-3B-Instruct"  #"google/gemma-2-2b-it"#"prithivMLmods/Llama-3.2-3B-GGUF"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    trust_remote_code=True,
    use_auth_token=True
)

# model.generation_config.pad_token_id = model.generation_config.eos_token_id


# embed_model = embedding_model

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class DocumentFormat(Enum):
    PDF = ".pdf"
    # Can be extended for other document types

@dataclass
class RAGConfig:
    """Configuration for RAG system parameters"""
    chunk_size: int = 500
    chunk_overlap: int = 100
    retriever_k: int = 3
    persist_directory: str = "./chroma_db"

class AdvancedRAGSystem:
    """Advanced RAG System with improved error handling and type safety"""
    
    DEFAULT_TEMPLATE = """<|start_header_id|>system<|end_header_id|>
You are a helpful assistant. Use the following pieces of context to answer the question at the end.
If you don't know the answer, just say that you don't know, don't try to make up an answer.

Context:
{context}

<|eot_id|><|start_header_id|>user<|end_header_id|>
{question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
"""

    def __init__(
        self,
        embed_model: Embeddings,
        llm: BaseLanguageModel,
        config: Optional[RAGConfig] = None
    ):
        """Initialize the RAG system with required models and optional configuration"""
        self.embed_model = embed_model
        self.llm = llm
        self.config = config or RAGConfig()
        self.vector_store: Optional[Chroma] = None
        self.last_context: Optional[str] = None
        
        self.prompt = PromptTemplate(
            template=self.DEFAULT_TEMPLATE,
            input_variables=["context", "question"]
        )

    def _validate_file(self, file_path: Path) -> bool:
        """Validate if the file is of supported format and exists"""
        return file_path.suffix.lower() == DocumentFormat.PDF.value and file_path.exists()

    def _extract_text_from_pdf(self, pdf_path: Path) -> str:
        """Extract text from a PDF file with proper error handling"""
        try:
            with open(pdf_path, 'rb') as file:
                pdf_reader = PyPDF2.PdfReader(file)
                return "\n".join(
                    page.extract_text() 
                    for page in pdf_reader.pages
                )
        except Exception as e:
            logger.error(f"Error processing PDF {pdf_path}: {str(e)}")
            raise ValueError(f"Failed to process PDF {pdf_path}: {str(e)}")

    def _create_document_chunks(self, texts: List[str]) -> List[Any]:
        """Split documents into chunks using the configured parameters"""
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=self.config.chunk_size,
            chunk_overlap=self.config.chunk_overlap,
            length_function=len,
            add_start_index=True,
        )
        return text_splitter.create_documents(texts)

    def process_pdfs(self, pdf_files: List[str]) -> str:
        """Process and index PDF documents with improved error handling"""
        try:
            # Convert to Path objects and validate
            pdf_paths = [Path(pdf.name) for pdf in pdf_files]
            invalid_files = [f for f in pdf_paths if not self._validate_file(f)]
            
            if invalid_files:
                raise ValueError(f"Invalid or missing files: {invalid_files}")

            # Extract text from valid PDFs
            documents = [
                self._extract_text_from_pdf(pdf_path)
                for pdf_path in pdf_paths
            ]

            # Create document chunks
            doc_chunks = self._create_document_chunks(documents)

            # Initialize or update vector store
            self.vector_store = Chroma.from_documents(
                documents=doc_chunks,
                embedding=self.embed_model,
                persist_directory=self.config.persist_directory
            )

            logger.info(f"Successfully processed {len(doc_chunks)} chunks from {len(pdf_files)} PDF files")
            return f"Successfully processed {len(doc_chunks)} chunks from {len(pdf_files)} PDF files"

        except Exception as e:
            error_msg = f"Error during PDF processing: {str(e)}"
            logger.error(error_msg)
            raise RuntimeError(error_msg)

    def get_retriever(self) -> BaseRetriever:
        """Get the document retriever with current configuration"""
        if not self.vector_store:
            raise RuntimeError("Vector store not initialized. Please process documents first.")
        return self.vector_store.as_retriever(search_kwargs={"k": self.config.retriever_k})

    def _format_context(self, documents: List[Any]) -> str:
        """Format retrieved documents into a single context string"""
        return "\n\n".join(doc.page_content for doc in documents)

    def query(self, question: str) -> Dict[str, str]:
        """Query the RAG system with improved error handling and response formatting"""
        try:
            if not self.vector_store:
                raise RuntimeError("Please process PDF documents first before querying")

            # Retrieve relevant documents
            retriever = self.get_retriever()
            retrieved_docs = retriever.get_relevant_documents(question)
            context = self._format_context(retrieved_docs)
            self.last_context = context

            # Generate response using LLM
            response = self.llm.invoke(
                self.prompt.format(
                    context=context,
                    question=question
                )
            )

            return {
                "answer": response.split("<|end_header_id|>")[-1],
                "context": context,
                "source_documents": len(retrieved_docs)
            }

        except Exception as e:
            error_msg = f"Error during query processing: {str(e)}"
            logger.error(error_msg)
            raise RuntimeError(error_msg)

def create_gradio_interface(rag_system: AdvancedRAGSystem) -> gr.Blocks:
    """Create an improved Gradio interface for the RAG system"""
    
    def process_files(files: List[Any], chunk_size: int, overlap: int) -> str:
        """Process uploaded files with updated configuration"""
        if not files:
            return "Please upload PDF files"
        
        # Update configuration with new parameters
        rag_system.config.chunk_size = chunk_size
        rag_system.config.chunk_overlap = overlap
        
        try:
            return rag_system.process_pdfs(files)
        except Exception as e:
            return f"Error: {str(e)}"

    def query_and_update_history(question: str) -> tuple[str, str]:
        """Query system and update history with error handling"""
        try:
            result = rag_system.query(question)
            return (
                result["answer"],
                f"Last context used ({result['source_documents']} documents):\n\n{result['context']}"
            )
        except Exception as e:
            return str(e), "Error occurred while retrieving context"
    with gr.Blocks(title="Advanced RAG System") as demo:
        gr.Markdown("# Advanced RAG System with PDF Processing")
        
        with gr.Tab("Upload & Process PDFs"):
            with gr.Row():
                with gr.Column():
                    file_input = gr.File(
                        file_count="multiple",
                        label="Upload PDF Documents",
                        file_types=[".pdf"]
                    )
                    chunk_size = gr.Slider(
                        minimum=100,
                        maximum=10000,
                        value=500,
                        step=100,
                        label="Chunk Size"
                    )
                    overlap = gr.Slider(
                        minimum=10,
                        maximum=5000,
                        value=100,
                        step=10,
                        label="Chunk Overlap"
                    )
                    process_button = gr.Button("Process PDFs", variant="primary")
                    process_output = gr.Textbox(label="Processing Status")

        with gr.Tab("Query System"):
            with gr.Row():
                with gr.Column(scale=2):
                    question_input = gr.Textbox(
                        label="Your Question",
                        placeholder="Enter your question here...",
                        lines=3
                    )
                    query_button = gr.Button("Get Answer", variant="primary")
                    answer_output = gr.Textbox(
                        label="Answer",
                        lines=10
                    )
                with gr.Column(scale=1):
                    history_output = gr.Textbox(
                        label="Retrieved Context",
                        lines=15
                    )

        # Set up event handlers
        process_button.click(
            fn=process_files,
            inputs=[file_input, chunk_size, overlap],
            outputs=[process_output]
        )
        
        query_button.click(
            fn=query_and_update_history,
            inputs=[question_input],
            outputs=[answer_output, history_output]
        )

    return demo


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )
rag_system = AdvancedRAGSystem(embed_model, llm)
demo = create_gradio_interface(rag_system)


if __name__ == "__main__":
    demo.launch()