File size: 6,711 Bytes
58332ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82b4c6c
 
58332ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82b4c6c
 
 
 
 
 
 
 
 
 
 
 
 
58332ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82b4c6c
58332ae
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os

import gradio as gr
from text_generation import Client

HF_TOKEN = os.environ.get("HF_TOKEN", None)
API_URL = " https://api-inference.huggingface.co/models/BigCode/octocoder"

theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[
        gr.themes.GoogleFont("Open Sans"),
        "ui-sans-serif",
        "system-ui",
        "sans-serif",
    ],
)

client = Client(
    API_URL,
    headers={"Authorization": f"Bearer {HF_TOKEN}"},
)

def generate(query:str, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ):
    if query.endswith("."):
        prompt = f"Question: {query}\n\nAnswer:"
    else:
        prompt = f"Question: {query}.\n\nAnswer:"

    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    stream = client.generate_stream(prompt, **generate_kwargs)
    output = ""

    previous_token = ""
    for response in stream:
        if response.token.text == "<|endoftext|>":
            return output
        else:
            output += response.token.text
        previous_token = response.token.text
        yield output
    return output


def process_example(**krwags):
    for x in generate(**krwags):
        pass
    return x


css = ".generating {visibility: hidden}"

monospace_css = """
#q-input textarea {
    font-family: monospace, 'Consolas', Courier, monospace;
}
"""

description = """
<div style="text-align: center;">
    <center><img src='https://raw.githubusercontent.com/bigcode-project/octopack/31f3320f098703c7910e43492c39366eeea68d83/banner.png' width='70%'/></center>
    <br>
    <h1><u> OctoCoder Demo </u></h1>
</div>
<br>
<div style="text-align: center;">
    <p>This is a demo to demonstrate the capabilities of <a href="https://huggingface.co/bigcode/octocoder">OctoCoder</a> model by showing how it can be used to generate code by following the instructions provided in the input.</p>
    <p><strong>OctoCoder</strong> is an instruction tuned model with 15.5B parameters created by finetuning StarCoder on CommitPackFT & OASST</p>
</div>
"""
disclaimer = """⚠️<b>Any use or sharing of this demo constitues your acceptance of the BigCode [OpenRAIL-M](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) License Agreement and the use restrictions included within.</b>\
 <br>**Intended Use**: this app and its [supporting model](https://huggingface.co/bigcode) are provided for demonstration purposes; not to serve as replacement for human expertise. For more details on the model's limitations in terms of factuality and biases, see the [model card.](https://huggingface.co/bigcode)"""


examples = [
    ['Please write a function in Python that performs bubble sort.', 256],
    ['''Explain the following piece of code
def count_unique(s):
    s = s.lower()
    s_split = list(s)
    valid_chars = [char for char in s_split if char.isalpha() or char == " "]
    valid_sentence = "".join(valid_chars)
    uniques = set(valid_sentence.split(" "))
    return len(uniques)''', 512],
    ['Write an efficient Python function that takes a given text and returns its Morse code equivalent without using any third party library', 512],
    ['Write a html and css code to render a clock', 8000],
]


with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
    with gr.Column():
        gr.Markdown(description)
        with gr.Row():
            with gr.Column():
                with gr.Accordion("Settings", open=True):
                    with gr.Row():
                        column_1, column_2 = gr.Column(), gr.Column()
                        with column_1:
                            temperature = gr.Slider(
                                label="Temperature",
                                value=0.2,
                                minimum=0.0,
                                maximum=1.0,
                                step=0.05,
                                interactive=True,
                                info="Higher values produce more diverse outputs",
                            )
                            max_new_tokens = gr.Slider(
                                label="Max new tokens",
                                value=256,
                                minimum=0,
                                maximum=8192,
                                step=64,
                                interactive=True,
                                info="The maximum numbers of new tokens",
                            )
                        with column_2:
                            top_p = gr.Slider(
                                label="Top-p (nucleus sampling)",
                                value=0.90,
                                minimum=0.0,
                                maximum=1,
                                step=0.05,
                                interactive=True,
                                info="Higher values sample more low-probability tokens",
                            )
                            repetition_penalty = gr.Slider(
                                label="Repetition penalty",
                                value=1.2,
                                minimum=1.0,
                                maximum=2.0,
                                step=0.05,
                                interactive=True,
                                info="Penalize repeated tokens",
                            )

        with gr.Row():
            with gr.Column():
                instruction = gr.Textbox(
                    placeholder="Enter your query here",
                    lines=5,
                    label="Input",
                    elem_id="q-input",
                )
                submit = gr.Button("Generate", variant="primary")
                output = gr.Code(elem_id="q-output", lines=30, label="Output")
                gr.Markdown(disclaimer)
                gr.Examples(
                    examples=examples,
                    inputs=[instruction, max_new_tokens],
                    cache_examples=False,
                    fn=process_example,
                    outputs=[output],
                )

    submit.click(
        generate,
        inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty],
        outputs=[output],
    )
demo.queue(concurrency_count=16).launch(debug=True)