roots-search / app.py
ola13's picture
init tokens_html
02585d9
import json
import os
import re
import string
import traceback
from typing import List, Tuple
import gradio as gr
import requests
from huggingface_hub import HfApi
hf_api = HfApi()
roots_datasets = {
dset.id.split("/")[-1]: dset
for dset in hf_api.list_datasets(
author="bigscience-data", use_auth_token=os.environ.get("bigscience_data_token")
)
}
def get_docid_html(docid):
data_org, dataset, docid = docid.split("/")
metadata = roots_datasets[dataset]
locked_color = "LightGray"
open_color = "#7978FF"
if metadata.private:
docid_html = """
<a title="This dataset is private. See the introductory text for more information"
style="color:{locked_color}; font-weight: bold; text-decoration:none"
onmouseover="style='color:{locked_color}; font-weight: bold; text-decoration:underline'"
onmouseout="style='color:{locked_color}; font-weight: bold; text-decoration:none'"
href="https://huggingface.co/datasets/bigscience-data/{dataset}"
target="_blank">
πŸ”’{dataset}
</a>
<span style="color:{open_color}; ">/{docid}</span>""".format(
dataset=dataset,
docid=docid,
locked_color=locked_color,
open_color=open_color,
)
else:
docid_html = """
<a title="This dataset is licensed {metadata}"
style="color:{open_color}; font-weight: bold; text-decoration:none"
onmouseover="style='color:{open_color}; font-weight: bold; text-decoration:underline'"
onmouseout="style='color:{open_color}; font-weight: bold; text-decoration:none'"
href="https://huggingface.co/datasets/bigscience-data/{dataset}"
target="_blank">
{dataset}
</a>
<span style="color:{open_color}; ">/{docid}</span>""".format(
metadata=metadata.tags[0].split(":")[-1],
dataset=dataset,
docid=docid,
open_color=open_color,
)
return docid_html
PII_TAGS = {"KEY", "EMAIL", "USER", "IP_ADDRESS", "ID", "IPv4", "IPv6"}
PII_PREFIX = "PI:"
def process_pii(text):
for tag in PII_TAGS:
text = text.replace(
PII_PREFIX + tag,
"""<b><mark style="background: Fuchsia; color: Lime;">REDACTED {}</mark></b>""".format(
tag
),
)
return text
def extract_lang_from_docid(docid):
return docid.split("_")[1]
def normalize(document):
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(document))))
def format_result(result, highlight_terms, exact_search, datasets_filter=None):
text, url, docid = result
if datasets_filter is not None:
datasets_filter = set(datasets_filter)
dataset = docid.split("/")[1]
if not dataset in datasets_filter:
return ""
tokens_html = ""
if exact_search:
query_variants = [highlight_terms]
# lower
query_variant = highlight_terms.lower()
if query_variant not in query_variants:
query_variants.append(query_variant)
# upper
query_variant = highlight_terms.upper()
if query_variant not in query_variants:
query_variants.append(query_variant)
# first capital
query_variant = highlight_terms.lower()
query_variant = query_variant[0].upper() + query_variant[1:].lower()
if query_variant not in query_variants:
query_variants.append(query_variant)
# camel case
query_tokens = highlight_terms.split()
query_variant = " ".join(
[token[0].upper() + token[1:].lower() for token in query_tokens]
)
if query_variant not in query_variants:
query_variants.append(query_variant)
for query_variant in query_variants:
query_start = text.find(query_variant)
if query_start >= 0:
query_end = query_start + len(query_variant)
tokens_html = text[0:query_start]
tokens_html += "<b>{}</b>".format(text[query_start:query_end])
tokens_html += text[query_end:]
break
else:
tokens = text.split()
tokens_html = []
for token in tokens:
if token in highlight_terms:
tokens_html.append("<b>{}</b>".format(token))
else:
tokens_html.append(token)
tokens_html = " ".join(tokens_html)
tokens_html = process_pii(tokens_html)
url_html = (
"""
<span style='font-size:12px; font-family: Arial; color:Silver; text-align: left;'>
<a style='text-decoration:none; color:Silver;'
onmouseover="style='text-decoration:underline; color:Silver;'"
onmouseout="style='text-decoration:none; color:Silver;'"
href='{url}'
target="_blank">
{url}
</a>
</span><br>
""".format(
url=url
)
if url is not None
else ""
)
docid_html = get_docid_html(docid)
language = extract_lang_from_docid(docid)
result_html = """{}
<span style='font-size:14px; font-family: Arial; color:MediumAquaMarine'>Language: {} | </span>
<span style='font-size:14px; font-family: Arial; color:#7978FF; text-align: left;'>Document ID: {} | </span>
<a href="https://forms.gle/AdBLLwRApqcLkHYA8" target="_blank">
<button style="color:#ffcdf8; ">πŸ΄β€β˜ οΈ Flag result πŸ΄β€β˜ οΈ</button>
</a><br>
<span style='font-family: Arial;'>{}</span><br>
<br>
""".format(
url_html, language, docid_html, tokens_html
)
return "<p>" + result_html + "</p>"
def format_result_page(
language, results, highlight_terms, num_results, exact_search, datasets_filter=None
) -> gr.HTML:
filtered_num_results = 0
header_html = ""
if language == "detect_language" and not exact_search:
header_html += """<div style='font-family: Arial; color:MediumAquaMarine; text-align: center; line-height: 3em'>
Detected language: <b style='color:MediumAquaMarine'>{}</b></div>""".format(
list(results.keys())[0]
)
result_page_html = ""
for lang, results_for_lang in results.items():
print("Processing language", lang)
if len(results_for_lang) == 0:
if exact_search:
result_page_html += """<div style='font-family: Arial; color:Silver; text-align: left; line-height: 3em'>
No results found.</div>"""
else:
result_page_html += """<div style='font-family: Arial; color:Silver; text-align: left; line-height: 3em'>
No results for language: <b>{}</b></div>""".format(
lang
)
continue
results_for_lang_html = ""
for result in results_for_lang:
result_html = format_result(
result, highlight_terms, exact_search, datasets_filter
)
if result_html != "":
filtered_num_results += 1
results_for_lang_html += result_html
if language == "all" and not exact_search:
results_for_lang_html = f"""
<details>
<summary style='font-family: Arial; color:MediumAquaMarine; text-align: left; line-height: 3em'>
Results for language: <b>{lang}</b>
</summary>
{results_for_lang_html}
</details>"""
result_page_html += results_for_lang_html
if num_results is not None:
header_html += """<div style='font-family: Arial; color:MediumAquaMarine; text-align: center; line-height: 3em'>
Total number of matches: <b style='color:MediumAquaMarine'>{}</b></div>""".format(
num_results
)
return header_html + result_page_html
def extract_results_from_payload(query, language, payload, exact_search):
results = payload["results"]
processed_results = dict()
datasets = set()
highlight_terms = None
num_results = None
if exact_search:
highlight_terms = query
num_results = payload["num_results"]
results = {"dummy": results}
else:
highlight_terms = payload["highlight_terms"]
for lang, results_for_lang in results.items():
processed_results[lang] = list()
for result in results_for_lang:
text = result["text"]
url = (
result["meta"]["url"]
if "meta" in result
and result["meta"] is not None
and "url" in result["meta"]
else None
)
docid = result["docid"]
_, dataset, _ = docid.split("/")
datasets.add(dataset)
processed_results[lang].append((text, url, docid))
return processed_results, highlight_terms, num_results, list(datasets)
def no_query_error_message():
return f"""
<p style='font-size:18px; font-family: Arial; color:MediumVioletRed; text-align: center;'>
Please provide a non-empty query.
</p><br><hr><br>"""
def process_error(error_type, payload):
if error_type == "unsupported_lang":
detected_lang = payload["err"]["meta"]["detected_lang"]
return f"""
<p style='font-size:18px; font-family: Arial; color:MediumVioletRed; text-align: center;'>
Detected language <b>{detected_lang}</b> is not supported.<br>
Please choose a language from the dropdown or type another query.
</p><br><hr><br>"""
def extract_error_from_payload(payload):
if "err" in payload:
return payload["err"]["type"]
return None
def request_payload(query, language, exact_search, num_results=10, received_results=0):
post_data = {"query": query, "k": num_results, "received_results": received_results}
if language != "detect_language":
post_data["lang"] = language
address = (
os.environ.get("address_exact_search")
if exact_search
else os.environ.get("address")
)
output = requests.post(
address,
headers={"Content-type": "application/json"},
data=json.dumps(post_data),
timeout=120,
)
payload = json.loads(output.text)
return payload
title = (
"""<p style="text-align: center; font-size:28px"> 🌸 πŸ”Ž ROOTS search tool πŸ” 🌸 </p>"""
)
description = """
The ROOTS corpus was developed during the [BigScience workshop](https://bigscience.huggingface.co/) for the purpose
of training the Multilingual Large Language Model [BLOOM](https://huggingface.co/bigscience/bloom). The ROOTS Search
Tool allows you to search through the ROOTS corpus. We serve a BM25 index for each language or group of languages
included in ROOTS. We also offer exact search which is enabled if you enclose your query in double quotes. More details
about the implementation and use cases is available in our [paper](https://arxiv.org/abs/2302.14035) - please cite it
if you use ROOTS Search Tool in your work. For more information and instructions on how to access the full corpus
consult [this form](https://forms.gle/qyYswbEL5kA23Wu99)."""
if __name__ == "__main__":
demo = gr.Blocks(css=".underline-on-hover:hover { text-decoration: underline; }")
with demo:
processed_results_state = gr.State([])
highlight_terms_state = gr.State([])
num_results_state = gr.State(0)
exact_search_state = gr.State(False)
received_results_state = gr.State(0)
with gr.Row():
gr.Markdown(value=title)
with gr.Row():
gr.Markdown(value=description)
with gr.Row():
query = gr.Textbox(
lines=1,
max_lines=1,
placeholder="Put your query in double quotes for exact search.",
label="Query",
)
with gr.Row():
lang = gr.Dropdown(
choices=[
"ar",
"ca",
"code",
"en",
"es",
"eu",
"fr",
"id",
"indic",
"nigercongo",
"pt",
"vi",
"zh",
"detect_language",
"all",
],
value="en",
label="Language",
)
k = gr.Slider(
1,
100,
value=10,
step=1,
label="Max Results in fuzzy search or Max Results per page in exact search",
)
with gr.Row():
submit_btn = gr.Button("Submit")
with gr.Row(visible=False) as datasets_filter:
available_datasets = gr.Dropdown(
type="value",
choices=[],
value=[],
label="Datasets Filter",
multiselect=True,
)
with gr.Row():
result_page_html = gr.HTML(label="Results")
with gr.Row(visible=False) as pagination:
next_page_btn = gr.Button("Next Page")
def run_query(query, lang, k, dropdown_input, received_results):
query = query.strip()
exact_search = False
if query.startswith('"') and query.endswith('"') and len(query) >= 2:
exact_search = True
query = query[1:-1]
else:
query = " ".join(query.split())
if query == "" or query is None:
return (
[],
[],
0,
False,
no_query_error_message(),
[],
)
payload = request_payload(query, lang, exact_search, k, received_results)
err = extract_error_from_payload(payload)
if err is not None:
return (
[],
[],
0,
False,
process_error(err, payload),
[],
)
(
processed_results,
highlight_terms,
num_results,
ds,
) = extract_results_from_payload(
query,
lang,
payload,
exact_search,
)
result_page = format_result_page(
lang, processed_results, highlight_terms, num_results, exact_search
)
return (
processed_results,
highlight_terms,
num_results,
exact_search,
result_page,
ds,
)
def submit(query, lang, k, dropdown_input):
print("submitting", query, lang, k)
(
processed_results,
highlight_terms,
num_results,
exact_search,
result_page,
datasets,
) = run_query(query, lang, k, dropdown_input, 0)
has_more_results = exact_search and (num_results > k)
current_results = (
len(next(iter(processed_results.values())))
if len(processed_results) > 0
else 0
)
return [
processed_results,
highlight_terms,
num_results,
exact_search,
gr.update(visible=True)
if current_results > 0
else gr.update(visible=False),
gr.Dropdown.update(choices=datasets, value=datasets),
gr.update(visible=has_more_results),
current_results,
result_page,
]
def next_page(
query,
lang,
k,
dropdown_input,
received_results,
processed_results,
):
(
processed_results,
highlight_terms,
num_results,
exact_search,
result_page,
datasets,
) = run_query(query, lang, k, dropdown_input, received_results)
current_results = sum(
len(results) for results in processed_results.values()
)
has_more_results = exact_search and (
received_results + current_results < num_results
)
print("received_results", received_results)
print("current_results", current_results)
print("has_more_results", has_more_results)
return [
processed_results,
highlight_terms,
num_results,
exact_search,
gr.update(visible=True)
if current_results > 0
else gr.update(visible=False),
gr.Dropdown.update(choices=datasets, value=datasets),
gr.update(visible=current_results >= k and has_more_results),
received_results + current_results,
result_page,
]
def filter_datasets(
lang,
processed_results,
highlight_terms,
num_results,
exact_search,
datasets_filter,
):
result_page_html = format_result_page(
lang,
processed_results,
highlight_terms,
num_results,
exact_search,
datasets_filter,
)
return result_page_html
query.submit(
fn=submit,
inputs=[query, lang, k, available_datasets],
outputs=[
processed_results_state,
highlight_terms_state,
num_results_state,
exact_search_state,
datasets_filter,
available_datasets,
pagination,
received_results_state,
result_page_html,
],
)
submit_btn.click(
submit,
inputs=[query, lang, k, available_datasets],
outputs=[
processed_results_state,
highlight_terms_state,
num_results_state,
exact_search_state,
datasets_filter,
available_datasets,
pagination,
received_results_state,
result_page_html,
],
)
next_page_btn.click(
next_page,
inputs=[
query,
lang,
k,
available_datasets,
received_results_state,
processed_results_state,
],
outputs=[
processed_results_state,
highlight_terms_state,
num_results_state,
exact_search_state,
datasets_filter,
available_datasets,
pagination,
received_results_state,
result_page_html,
],
)
available_datasets.change(
filter_datasets,
inputs=[
lang,
processed_results_state,
highlight_terms_state,
num_results_state,
exact_search_state,
available_datasets,
],
outputs=result_page_html,
)
demo.launch(enable_queue=False, debug=True)