Spaces:
Runtime error
Runtime error
File size: 13,122 Bytes
3650c12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
# Adapted from https://github.com/SSL92/hyperIQA/blob/master/models.py
import torch as torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn import init
import math
import torch.utils.model_zoo as model_zoo
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
class HyperNet(nn.Module):
"""
Hyper network for learning perceptual rules.
Args:
lda_out_channels: local distortion aware module output size.
hyper_in_channels: input feature channels for hyper network.
target_in_size: input vector size for target network.
target_fc(i)_size: fully connection layer size of target network.
feature_size: input feature map width/height for hyper network.
Note:
For size match, input args must satisfy: 'target_fc(i)_size * target_fc(i+1)_size' is divisible by 'feature_size ^ 2'.
"""
def __init__(self, lda_out_channels, hyper_in_channels, target_in_size, target_fc1_size, target_fc2_size, target_fc3_size, target_fc4_size, feature_size):
super(HyperNet, self).__init__()
self.hyperInChn = hyper_in_channels
self.target_in_size = target_in_size
self.f1 = target_fc1_size
self.f2 = target_fc2_size
self.f3 = target_fc3_size
self.f4 = target_fc4_size
self.feature_size = feature_size
self.res = resnet50_backbone(lda_out_channels, target_in_size, pretrained=True)
self.pool = nn.AdaptiveAvgPool2d((1, 1))
# Conv layers for resnet output features
self.conv1 = nn.Sequential(
nn.Conv2d(2048, 1024, 1, padding=(0, 0)),
nn.ReLU(inplace=True),
nn.Conv2d(1024, 512, 1, padding=(0, 0)),
nn.ReLU(inplace=True),
nn.Conv2d(512, self.hyperInChn, 1, padding=(0, 0)),
nn.ReLU(inplace=True)
)
# Hyper network part, conv for generating target fc weights, fc for generating target fc biases
self.fc1w_conv = nn.Conv2d(self.hyperInChn, int(self.target_in_size * self.f1 / feature_size ** 2), 3, padding=(1, 1))
self.fc1b_fc = nn.Linear(self.hyperInChn, self.f1)
self.fc2w_conv = nn.Conv2d(self.hyperInChn, int(self.f1 * self.f2 / feature_size ** 2), 3, padding=(1, 1))
self.fc2b_fc = nn.Linear(self.hyperInChn, self.f2)
self.fc3w_conv = nn.Conv2d(self.hyperInChn, int(self.f2 * self.f3 / feature_size ** 2), 3, padding=(1, 1))
self.fc3b_fc = nn.Linear(self.hyperInChn, self.f3)
self.fc4w_conv = nn.Conv2d(self.hyperInChn, int(self.f3 * self.f4 / feature_size ** 2), 3, padding=(1, 1))
self.fc4b_fc = nn.Linear(self.hyperInChn, self.f4)
self.fc5w_fc = nn.Linear(self.hyperInChn, self.f4)
self.fc5b_fc = nn.Linear(self.hyperInChn, 1)
# initialize
for i, m_name in enumerate(self._modules):
if i > 2:
nn.init.kaiming_normal_(self._modules[m_name].weight.data)
def forward(self, img):
feature_size = self.feature_size
res_out = self.res(img)
# input vector for target net
target_in_vec = res_out['target_in_vec'].reshape(-1, self.target_in_size, 1, 1)
# input features for hyper net
hyper_in_feat = self.conv1(res_out['hyper_in_feat']).reshape(-1, self.hyperInChn, feature_size, feature_size)
# generating target net weights & biases
target_fc1w = self.fc1w_conv(hyper_in_feat).reshape(-1, self.f1, self.target_in_size, 1, 1)
target_fc1b = self.fc1b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f1)
target_fc2w = self.fc2w_conv(hyper_in_feat).reshape(-1, self.f2, self.f1, 1, 1)
target_fc2b = self.fc2b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f2)
target_fc3w = self.fc3w_conv(hyper_in_feat).reshape(-1, self.f3, self.f2, 1, 1)
target_fc3b = self.fc3b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f3)
target_fc4w = self.fc4w_conv(hyper_in_feat).reshape(-1, self.f4, self.f3, 1, 1)
target_fc4b = self.fc4b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f4)
target_fc5w = self.fc5w_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, 1, self.f4, 1, 1)
target_fc5b = self.fc5b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, 1)
out = {}
out['target_in_vec'] = target_in_vec
out['target_fc1w'] = target_fc1w
out['target_fc1b'] = target_fc1b
out['target_fc2w'] = target_fc2w
out['target_fc2b'] = target_fc2b
out['target_fc3w'] = target_fc3w
out['target_fc3b'] = target_fc3b
out['target_fc4w'] = target_fc4w
out['target_fc4b'] = target_fc4b
out['target_fc5w'] = target_fc5w
out['target_fc5b'] = target_fc5b
return out
class TargetNet(nn.Module):
"""
Target network for quality prediction.
"""
def __init__(self, paras):
super(TargetNet, self).__init__()
self.l1 = nn.Sequential(
TargetFC(paras['target_fc1w'], paras['target_fc1b']),
nn.Sigmoid(),
)
self.l2 = nn.Sequential(
TargetFC(paras['target_fc2w'], paras['target_fc2b']),
nn.Sigmoid(),
)
self.l3 = nn.Sequential(
TargetFC(paras['target_fc3w'], paras['target_fc3b']),
nn.Sigmoid(),
)
self.l4 = nn.Sequential(
TargetFC(paras['target_fc4w'], paras['target_fc4b']),
nn.Sigmoid(),
TargetFC(paras['target_fc5w'], paras['target_fc5b']),
)
def forward(self, x):
q = self.l1(x)
# q = F.dropout(q)
q = self.l2(q)
q = self.l3(q)
q = self.l4(q).squeeze()
return q
class TargetFC(nn.Module):
"""
Fully connection operations for target net
Note:
Weights & biases are different for different images in a batch,
thus here we use group convolution for calculating images in a batch with individual weights & biases.
"""
def __init__(self, weight, bias):
super(TargetFC, self).__init__()
self.weight = weight
self.bias = bias
def forward(self, input_):
input_re = input_.reshape(-1, input_.shape[0] * input_.shape[1], input_.shape[2], input_.shape[3])
weight_re = self.weight.reshape(self.weight.shape[0] * self.weight.shape[1], self.weight.shape[2], self.weight.shape[3], self.weight.shape[4])
bias_re = self.bias.reshape(self.bias.shape[0] * self.bias.shape[1])
out = F.conv2d(input=input_re, weight=weight_re, bias=bias_re, groups=self.weight.shape[0])
return out.reshape(input_.shape[0], self.weight.shape[1], input_.shape[2], input_.shape[3])
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNetBackbone(nn.Module):
def __init__(self, lda_out_channels, in_chn, block, layers, num_classes=1000):
super(ResNetBackbone, self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
# local distortion aware module
self.lda1_pool = nn.Sequential(
nn.Conv2d(256, 16, kernel_size=1, stride=1, padding=0, bias=False),
nn.AvgPool2d(7, stride=7),
)
self.lda1_fc = nn.Linear(16 * 64, lda_out_channels)
self.lda2_pool = nn.Sequential(
nn.Conv2d(512, 32, kernel_size=1, stride=1, padding=0, bias=False),
nn.AvgPool2d(7, stride=7),
)
self.lda2_fc = nn.Linear(32 * 16, lda_out_channels)
self.lda3_pool = nn.Sequential(
nn.Conv2d(1024, 64, kernel_size=1, stride=1, padding=0, bias=False),
nn.AvgPool2d(7, stride=7),
)
self.lda3_fc = nn.Linear(64 * 4, lda_out_channels)
self.lda4_pool = nn.AvgPool2d(7, stride=7)
self.lda4_fc = nn.Linear(2048, in_chn - lda_out_channels * 3)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
# initialize
nn.init.kaiming_normal_(self.lda1_pool._modules['0'].weight.data)
nn.init.kaiming_normal_(self.lda2_pool._modules['0'].weight.data)
nn.init.kaiming_normal_(self.lda3_pool._modules['0'].weight.data)
nn.init.kaiming_normal_(self.lda1_fc.weight.data)
nn.init.kaiming_normal_(self.lda2_fc.weight.data)
nn.init.kaiming_normal_(self.lda3_fc.weight.data)
nn.init.kaiming_normal_(self.lda4_fc.weight.data)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
# the same effect as lda operation in the paper, but save much more memory
lda_1 = self.lda1_fc(self.lda1_pool(x).reshape(x.size(0), -1))
x = self.layer2(x)
lda_2 = self.lda2_fc(self.lda2_pool(x).reshape(x.size(0), -1))
x = self.layer3(x)
lda_3 = self.lda3_fc(self.lda3_pool(x).reshape(x.size(0), -1))
x = self.layer4(x)
lda_4 = self.lda4_fc(self.lda4_pool(x).reshape(x.size(0), -1))
vec = torch.cat((lda_1, lda_2, lda_3, lda_4), 1)
out = {}
out['hyper_in_feat'] = x
out['target_in_vec'] = vec
return out
def resnet50_backbone(lda_out_channels, in_chn, pretrained=False, **kwargs):
"""Constructs a ResNet-50 model_hyper.
Args:
pretrained (bool): If True, returns a model_hyper pre-trained on ImageNet
"""
model = ResNetBackbone(lda_out_channels, in_chn, Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
save_model = model_zoo.load_url(model_urls['resnet50'])
model_dict = model.state_dict()
state_dict = {k: v for k, v in save_model.items() if k in model_dict.keys()}
model_dict.update(state_dict)
model.load_state_dict(model_dict)
else:
model.apply(weights_init_xavier)
return model
def weights_init_xavier(m):
classname = m.__class__.__name__
# print(classname)
# if isinstance(m, nn.Conv2d):
if classname.find('Conv') != -1:
init.kaiming_normal_(m.weight.data)
elif classname.find('Linear') != -1:
init.kaiming_normal_(m.weight.data)
elif classname.find('BatchNorm2d') != -1:
init.uniform_(m.weight.data, 1.0, 0.02)
init.constant_(m.bias.data, 0.0)
|