File size: 13,122 Bytes
3650c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Adapted from https://github.com/SSL92/hyperIQA/blob/master/models.py

import torch as torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn import init
import math
import torch.utils.model_zoo as model_zoo

model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}


class HyperNet(nn.Module):
    """
    Hyper network for learning perceptual rules.

    Args:
        lda_out_channels: local distortion aware module output size.
        hyper_in_channels: input feature channels for hyper network.
        target_in_size: input vector size for target network.
        target_fc(i)_size: fully connection layer size of target network.
        feature_size: input feature map width/height for hyper network.

    Note:
        For size match, input args must satisfy: 'target_fc(i)_size * target_fc(i+1)_size' is divisible by 'feature_size ^ 2'.

    """
    def __init__(self, lda_out_channels, hyper_in_channels, target_in_size, target_fc1_size, target_fc2_size, target_fc3_size, target_fc4_size, feature_size):
        super(HyperNet, self).__init__()

        self.hyperInChn = hyper_in_channels
        self.target_in_size = target_in_size
        self.f1 = target_fc1_size
        self.f2 = target_fc2_size
        self.f3 = target_fc3_size
        self.f4 = target_fc4_size
        self.feature_size = feature_size

        self.res = resnet50_backbone(lda_out_channels, target_in_size, pretrained=True)

        self.pool = nn.AdaptiveAvgPool2d((1, 1))

        # Conv layers for resnet output features
        self.conv1 = nn.Sequential(
            nn.Conv2d(2048, 1024, 1, padding=(0, 0)),
            nn.ReLU(inplace=True),
            nn.Conv2d(1024, 512, 1, padding=(0, 0)),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, self.hyperInChn, 1, padding=(0, 0)),
            nn.ReLU(inplace=True)
        )

        # Hyper network part, conv for generating target fc weights, fc for generating target fc biases
        self.fc1w_conv = nn.Conv2d(self.hyperInChn, int(self.target_in_size * self.f1 / feature_size ** 2), 3,  padding=(1, 1))
        self.fc1b_fc = nn.Linear(self.hyperInChn, self.f1)

        self.fc2w_conv = nn.Conv2d(self.hyperInChn, int(self.f1 * self.f2 / feature_size ** 2), 3, padding=(1, 1))
        self.fc2b_fc = nn.Linear(self.hyperInChn, self.f2)

        self.fc3w_conv = nn.Conv2d(self.hyperInChn, int(self.f2 * self.f3 / feature_size ** 2), 3, padding=(1, 1))
        self.fc3b_fc = nn.Linear(self.hyperInChn, self.f3)

        self.fc4w_conv = nn.Conv2d(self.hyperInChn, int(self.f3 * self.f4 / feature_size ** 2), 3, padding=(1, 1))
        self.fc4b_fc = nn.Linear(self.hyperInChn, self.f4)

        self.fc5w_fc = nn.Linear(self.hyperInChn, self.f4)
        self.fc5b_fc = nn.Linear(self.hyperInChn, 1)

        # initialize
        for i, m_name in enumerate(self._modules):
            if i > 2:
                nn.init.kaiming_normal_(self._modules[m_name].weight.data)

    def forward(self, img):
        feature_size = self.feature_size

        res_out = self.res(img)

        # input vector for target net
        target_in_vec = res_out['target_in_vec'].reshape(-1, self.target_in_size, 1, 1)

        # input features for hyper net
        hyper_in_feat = self.conv1(res_out['hyper_in_feat']).reshape(-1, self.hyperInChn, feature_size, feature_size)

        # generating target net weights & biases
        target_fc1w = self.fc1w_conv(hyper_in_feat).reshape(-1, self.f1, self.target_in_size, 1, 1)
        target_fc1b = self.fc1b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f1)

        target_fc2w = self.fc2w_conv(hyper_in_feat).reshape(-1, self.f2, self.f1, 1, 1)
        target_fc2b = self.fc2b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f2)

        target_fc3w = self.fc3w_conv(hyper_in_feat).reshape(-1, self.f3, self.f2, 1, 1)
        target_fc3b = self.fc3b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f3)

        target_fc4w = self.fc4w_conv(hyper_in_feat).reshape(-1, self.f4, self.f3, 1, 1)
        target_fc4b = self.fc4b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f4)

        target_fc5w = self.fc5w_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, 1, self.f4, 1, 1)
        target_fc5b = self.fc5b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, 1)

        out = {}
        out['target_in_vec'] = target_in_vec
        out['target_fc1w'] = target_fc1w
        out['target_fc1b'] = target_fc1b
        out['target_fc2w'] = target_fc2w
        out['target_fc2b'] = target_fc2b
        out['target_fc3w'] = target_fc3w
        out['target_fc3b'] = target_fc3b
        out['target_fc4w'] = target_fc4w
        out['target_fc4b'] = target_fc4b
        out['target_fc5w'] = target_fc5w
        out['target_fc5b'] = target_fc5b

        return out


class TargetNet(nn.Module):
    """
    Target network for quality prediction.
    """
    def __init__(self, paras):
        super(TargetNet, self).__init__()
        self.l1 = nn.Sequential(
            TargetFC(paras['target_fc1w'], paras['target_fc1b']),
            nn.Sigmoid(),
        )
        self.l2 = nn.Sequential(
            TargetFC(paras['target_fc2w'], paras['target_fc2b']),
            nn.Sigmoid(),
        )

        self.l3 = nn.Sequential(
            TargetFC(paras['target_fc3w'], paras['target_fc3b']),
            nn.Sigmoid(),
        )

        self.l4 = nn.Sequential(
            TargetFC(paras['target_fc4w'], paras['target_fc4b']),
            nn.Sigmoid(),
            TargetFC(paras['target_fc5w'], paras['target_fc5b']),
        )

    def forward(self, x):
        q = self.l1(x)
        # q = F.dropout(q)
        q = self.l2(q)
        q = self.l3(q)
        q = self.l4(q).squeeze()
        return q


class TargetFC(nn.Module):
    """
    Fully connection operations for target net

    Note:
        Weights & biases are different for different images in a batch,
        thus here we use group convolution for calculating images in a batch with individual weights & biases.
    """
    def __init__(self, weight, bias):
        super(TargetFC, self).__init__()
        self.weight = weight
        self.bias = bias

    def forward(self, input_):

        input_re = input_.reshape(-1, input_.shape[0] * input_.shape[1], input_.shape[2], input_.shape[3])
        weight_re = self.weight.reshape(self.weight.shape[0] * self.weight.shape[1], self.weight.shape[2], self.weight.shape[3], self.weight.shape[4])
        bias_re = self.bias.reshape(self.bias.shape[0] * self.bias.shape[1])
        out = F.conv2d(input=input_re, weight=weight_re, bias=bias_re, groups=self.weight.shape[0])

        return out.reshape(input_.shape[0], self.weight.shape[1], input_.shape[2], input_.shape[3])


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class ResNetBackbone(nn.Module):

    def __init__(self, lda_out_channels, in_chn, block, layers, num_classes=1000):
        super(ResNetBackbone, self).__init__()
        self.inplanes = 64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        # local distortion aware module
        self.lda1_pool = nn.Sequential(
            nn.Conv2d(256, 16, kernel_size=1, stride=1, padding=0, bias=False),
            nn.AvgPool2d(7, stride=7),
        )
        self.lda1_fc = nn.Linear(16 * 64, lda_out_channels)

        self.lda2_pool = nn.Sequential(
            nn.Conv2d(512, 32, kernel_size=1, stride=1, padding=0, bias=False),
            nn.AvgPool2d(7, stride=7),
        )
        self.lda2_fc = nn.Linear(32 * 16, lda_out_channels)

        self.lda3_pool = nn.Sequential(
            nn.Conv2d(1024, 64, kernel_size=1, stride=1, padding=0, bias=False),
            nn.AvgPool2d(7, stride=7),
        )
        self.lda3_fc = nn.Linear(64 * 4, lda_out_channels)

        self.lda4_pool = nn.AvgPool2d(7, stride=7)
        self.lda4_fc = nn.Linear(2048, in_chn - lda_out_channels * 3)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

        # initialize
        nn.init.kaiming_normal_(self.lda1_pool._modules['0'].weight.data)
        nn.init.kaiming_normal_(self.lda2_pool._modules['0'].weight.data)
        nn.init.kaiming_normal_(self.lda3_pool._modules['0'].weight.data)
        nn.init.kaiming_normal_(self.lda1_fc.weight.data)
        nn.init.kaiming_normal_(self.lda2_fc.weight.data)
        nn.init.kaiming_normal_(self.lda3_fc.weight.data)
        nn.init.kaiming_normal_(self.lda4_fc.weight.data)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)

        # the same effect as lda operation in the paper, but save much more memory
        lda_1 = self.lda1_fc(self.lda1_pool(x).reshape(x.size(0), -1))
        x = self.layer2(x)
        lda_2 = self.lda2_fc(self.lda2_pool(x).reshape(x.size(0), -1))
        x = self.layer3(x)
        lda_3 = self.lda3_fc(self.lda3_pool(x).reshape(x.size(0), -1))
        x = self.layer4(x)
        lda_4 = self.lda4_fc(self.lda4_pool(x).reshape(x.size(0), -1))

        vec = torch.cat((lda_1, lda_2, lda_3, lda_4), 1)

        out = {}
        out['hyper_in_feat'] = x
        out['target_in_vec'] = vec

        return out


def resnet50_backbone(lda_out_channels, in_chn, pretrained=False, **kwargs):
    """Constructs a ResNet-50 model_hyper.

    Args:
        pretrained (bool): If True, returns a model_hyper pre-trained on ImageNet
    """
    model = ResNetBackbone(lda_out_channels, in_chn, Bottleneck, [3, 4, 6, 3], **kwargs)
    if pretrained:
        save_model = model_zoo.load_url(model_urls['resnet50'])
        model_dict = model.state_dict()
        state_dict = {k: v for k, v in save_model.items() if k in model_dict.keys()}
        model_dict.update(state_dict)
        model.load_state_dict(model_dict)
    else:
        model.apply(weights_init_xavier)
    return model


def weights_init_xavier(m):
    classname = m.__class__.__name__
    # print(classname)
    # if isinstance(m, nn.Conv2d):
    if classname.find('Conv') != -1:
        init.kaiming_normal_(m.weight.data)
    elif classname.find('Linear') != -1:
        init.kaiming_normal_(m.weight.data)
    elif classname.find('BatchNorm2d') != -1:
        init.uniform_(m.weight.data, 1.0, 0.02)
        init.constant_(m.bias.data, 0.0)