File size: 8,834 Bytes
3650c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from torch import nn
from einops import rearrange
from torch.nn import functional as F
from ..utils.util import cosine_loss

import torch.nn as nn
import torch.nn.functional as F

from diffusers.models.attention import CrossAttention, FeedForward
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange


class SyncNet(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.audio_encoder = DownEncoder2D(
            in_channels=config["audio_encoder"]["in_channels"],
            block_out_channels=config["audio_encoder"]["block_out_channels"],
            downsample_factors=config["audio_encoder"]["downsample_factors"],
            dropout=config["audio_encoder"]["dropout"],
            attn_blocks=config["audio_encoder"]["attn_blocks"],
        )

        self.visual_encoder = DownEncoder2D(
            in_channels=config["visual_encoder"]["in_channels"],
            block_out_channels=config["visual_encoder"]["block_out_channels"],
            downsample_factors=config["visual_encoder"]["downsample_factors"],
            dropout=config["visual_encoder"]["dropout"],
            attn_blocks=config["visual_encoder"]["attn_blocks"],
        )

        self.eval()

    def forward(self, image_sequences, audio_sequences):
        vision_embeds = self.visual_encoder(image_sequences)  # (b, c, 1, 1)
        audio_embeds = self.audio_encoder(audio_sequences)  # (b, c, 1, 1)

        vision_embeds = vision_embeds.reshape(vision_embeds.shape[0], -1)  # (b, c)
        audio_embeds = audio_embeds.reshape(audio_embeds.shape[0], -1)  # (b, c)

        # Make them unit vectors
        vision_embeds = F.normalize(vision_embeds, p=2, dim=1)
        audio_embeds = F.normalize(audio_embeds, p=2, dim=1)

        return vision_embeds, audio_embeds


class ResnetBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        eps: float = 1e-6,
        act_fn: str = "silu",
        downsample_factor=2,
    ):
        super().__init__()

        self.norm1 = nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=eps, affine=True)
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)

        self.norm2 = nn.GroupNorm(num_groups=norm_num_groups, num_channels=out_channels, eps=eps, affine=True)
        self.dropout = nn.Dropout(dropout)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)

        if act_fn == "relu":
            self.act_fn = nn.ReLU()
        elif act_fn == "silu":
            self.act_fn = nn.SiLU()

        if in_channels != out_channels:
            self.conv_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
        else:
            self.conv_shortcut = None

        if isinstance(downsample_factor, list):
            downsample_factor = tuple(downsample_factor)

        if downsample_factor == 1:
            self.downsample_conv = None
        else:
            self.downsample_conv = nn.Conv2d(
                out_channels, out_channels, kernel_size=3, stride=downsample_factor, padding=0
            )
            self.pad = (0, 1, 0, 1)
            if isinstance(downsample_factor, tuple):
                if downsample_factor[0] == 1:
                    self.pad = (0, 1, 1, 1)  # The padding order is from back to front
                elif downsample_factor[1] == 1:
                    self.pad = (1, 1, 0, 1)

    def forward(self, input_tensor):
        hidden_states = input_tensor

        hidden_states = self.norm1(hidden_states)
        hidden_states = self.act_fn(hidden_states)

        hidden_states = self.conv1(hidden_states)
        hidden_states = self.norm2(hidden_states)
        hidden_states = self.act_fn(hidden_states)

        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states)

        if self.conv_shortcut is not None:
            input_tensor = self.conv_shortcut(input_tensor)

        hidden_states += input_tensor

        if self.downsample_conv is not None:
            hidden_states = F.pad(hidden_states, self.pad, mode="constant", value=0)
            hidden_states = self.downsample_conv(hidden_states)

        return hidden_states


class AttentionBlock2D(nn.Module):
    def __init__(self, query_dim, norm_num_groups=32, dropout=0.0):
        super().__init__()
        if not is_xformers_available():
            raise ModuleNotFoundError(
                "You have to install xformers to enable memory efficient attetion", name="xformers"
            )
        # inner_dim = dim_head * heads
        self.norm1 = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=query_dim, eps=1e-6, affine=True)
        self.norm2 = nn.LayerNorm(query_dim)
        self.norm3 = nn.LayerNorm(query_dim)

        self.ff = FeedForward(query_dim, dropout=dropout, activation_fn="geglu")

        self.conv_in = nn.Conv2d(query_dim, query_dim, kernel_size=1, stride=1, padding=0)
        self.conv_out = nn.Conv2d(query_dim, query_dim, kernel_size=1, stride=1, padding=0)

        self.attn = CrossAttention(query_dim=query_dim, heads=8, dim_head=query_dim // 8, dropout=dropout, bias=True)
        self.attn._use_memory_efficient_attention_xformers = True

    def forward(self, hidden_states):
        assert hidden_states.dim() == 4, f"Expected hidden_states to have ndim=4, but got ndim={hidden_states.dim()}."

        batch, channel, height, width = hidden_states.shape
        residual = hidden_states

        hidden_states = self.norm1(hidden_states)
        hidden_states = self.conv_in(hidden_states)
        hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c")

        norm_hidden_states = self.norm2(hidden_states)
        hidden_states = self.attn(norm_hidden_states, attention_mask=None) + hidden_states
        hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states

        hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=height, w=width)
        hidden_states = self.conv_out(hidden_states)

        hidden_states = hidden_states + residual
        return hidden_states


class DownEncoder2D(nn.Module):
    def __init__(
        self,
        in_channels=4 * 16,
        block_out_channels=[64, 128, 256, 256],
        downsample_factors=[2, 2, 2, 2],
        layers_per_block=2,
        norm_num_groups=32,
        attn_blocks=[1, 1, 1, 1],
        dropout: float = 0.0,
        act_fn="silu",
    ):
        super().__init__()
        self.layers_per_block = layers_per_block

        # in
        self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)

        # down
        self.down_blocks = nn.ModuleList([])

        output_channels = block_out_channels[0]
        for i, block_out_channel in enumerate(block_out_channels):
            input_channels = output_channels
            output_channels = block_out_channel
            # is_final_block = i == len(block_out_channels) - 1

            down_block = ResnetBlock2D(
                in_channels=input_channels,
                out_channels=output_channels,
                downsample_factor=downsample_factors[i],
                norm_num_groups=norm_num_groups,
                dropout=dropout,
                act_fn=act_fn,
            )

            self.down_blocks.append(down_block)

            if attn_blocks[i] == 1:
                attention_block = AttentionBlock2D(query_dim=output_channels, dropout=dropout)
                self.down_blocks.append(attention_block)

        # out
        self.norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
        self.act_fn_out = nn.ReLU()

    def forward(self, hidden_states):
        hidden_states = self.conv_in(hidden_states)

        # down
        for down_block in self.down_blocks:
            hidden_states = down_block(hidden_states)

        # post-process
        hidden_states = self.norm_out(hidden_states)
        hidden_states = self.act_fn_out(hidden_states)

        return hidden_states