File size: 5,598 Bytes
3650c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
from .box_utils import Detect, PriorBox


class L2Norm(nn.Module):

    def __init__(self, n_channels, scale):
        super(L2Norm, self).__init__()
        self.n_channels = n_channels
        self.gamma = scale or None
        self.eps = 1e-10
        self.weight = nn.Parameter(torch.Tensor(self.n_channels))
        self.reset_parameters()

    def reset_parameters(self):
        init.constant_(self.weight, self.gamma)

    def forward(self, x):
        norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps
        x = torch.div(x, norm)
        out = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(x) * x
        return out


class S3FDNet(nn.Module):

    def __init__(self, device='cuda'):
        super(S3FDNet, self).__init__()
        self.device = device

        self.vgg = nn.ModuleList([
            nn.Conv2d(3, 64, 3, 1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, 3, 1, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),

            nn.Conv2d(64, 128, 3, 1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, 3, 1, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),
            
            nn.Conv2d(128, 256, 3, 1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, 3, 1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, 3, 1, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2, ceil_mode=True),
            
            nn.Conv2d(256, 512, 3, 1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, 3, 1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, 3, 1, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),

            nn.Conv2d(512, 512, 3, 1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, 3, 1, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, 3, 1, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),

            nn.Conv2d(512, 1024, 3, 1, padding=6, dilation=6),
            nn.ReLU(inplace=True),
            nn.Conv2d(1024, 1024, 1, 1),
            nn.ReLU(inplace=True),
        ])

        self.L2Norm3_3 = L2Norm(256, 10)
        self.L2Norm4_3 = L2Norm(512, 8)
        self.L2Norm5_3 = L2Norm(512, 5)

        self.extras = nn.ModuleList([
            nn.Conv2d(1024, 256, 1, 1),
            nn.Conv2d(256, 512, 3, 2, padding=1),
            nn.Conv2d(512, 128, 1, 1),
            nn.Conv2d(128, 256, 3, 2, padding=1),
        ])
        
        self.loc = nn.ModuleList([
            nn.Conv2d(256, 4, 3, 1, padding=1),
            nn.Conv2d(512, 4, 3, 1, padding=1),
            nn.Conv2d(512, 4, 3, 1, padding=1),
            nn.Conv2d(1024, 4, 3, 1, padding=1),
            nn.Conv2d(512, 4, 3, 1, padding=1),
            nn.Conv2d(256, 4, 3, 1, padding=1),
        ])

        self.conf = nn.ModuleList([
            nn.Conv2d(256, 4, 3, 1, padding=1),
            nn.Conv2d(512, 2, 3, 1, padding=1),
            nn.Conv2d(512, 2, 3, 1, padding=1),
            nn.Conv2d(1024, 2, 3, 1, padding=1),
            nn.Conv2d(512, 2, 3, 1, padding=1),
            nn.Conv2d(256, 2, 3, 1, padding=1),
        ])

        self.softmax = nn.Softmax(dim=-1)
        self.detect = Detect()

    def forward(self, x):
        size = x.size()[2:]
        sources = list()
        loc = list()
        conf = list()

        for k in range(16):
            x = self.vgg[k](x)
        s = self.L2Norm3_3(x)
        sources.append(s)

        for k in range(16, 23):
            x = self.vgg[k](x)
        s = self.L2Norm4_3(x)
        sources.append(s)

        for k in range(23, 30):
            x = self.vgg[k](x)
        s = self.L2Norm5_3(x)
        sources.append(s)

        for k in range(30, len(self.vgg)):
            x = self.vgg[k](x)
        sources.append(x)
        
        # apply extra layers and cache source layer outputs
        for k, v in enumerate(self.extras):
            x = F.relu(v(x), inplace=True)
            if k % 2 == 1:
                sources.append(x)

        # apply multibox head to source layers
        loc_x = self.loc[0](sources[0])
        conf_x = self.conf[0](sources[0])

        max_conf, _ = torch.max(conf_x[:, 0:3, :, :], dim=1, keepdim=True)
        conf_x = torch.cat((max_conf, conf_x[:, 3:, :, :]), dim=1)

        loc.append(loc_x.permute(0, 2, 3, 1).contiguous())
        conf.append(conf_x.permute(0, 2, 3, 1).contiguous())

        for i in range(1, len(sources)):
            x = sources[i]
            conf.append(self.conf[i](x).permute(0, 2, 3, 1).contiguous())
            loc.append(self.loc[i](x).permute(0, 2, 3, 1).contiguous())

        features_maps = []
        for i in range(len(loc)):
            feat = []
            feat += [loc[i].size(1), loc[i].size(2)]
            features_maps += [feat]

        loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
        conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)

        with torch.no_grad():
            self.priorbox = PriorBox(size, features_maps)
            self.priors = self.priorbox.forward()

        output = self.detect.forward(
            loc.view(loc.size(0), -1, 4),
            self.softmax(conf.view(conf.size(0), -1, 2)),
            self.priors.type(type(x.data)).to(self.device)
        )

        return output