File size: 11,409 Bytes
3650c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import os
import math
import os.path as osp
import random
import pickle
import warnings

import glob
import numpy as np
from PIL import Image

import torch
import torch.utils.data as data
import torch.nn.functional as F
import torch.distributed as dist
from torchvision.datasets.video_utils import VideoClips

IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG']
VID_EXTENSIONS = ['.avi', '.mp4', '.webm', '.mov', '.mkv', '.m4v']


def get_dataloader(data_path, image_folder, resolution=128, sequence_length=16, sample_every_n_frames=1,
                   batch_size=16, num_workers=8):
    data = VideoData(data_path, image_folder, resolution, sequence_length, sample_every_n_frames, batch_size, num_workers)
    loader = data._dataloader()
    return loader


def is_image_file(filename):
    return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)


def get_parent_dir(path):
    return osp.basename(osp.dirname(path))


def preprocess(video, resolution, sequence_length=None, in_channels=3, sample_every_n_frames=1):
    # video: THWC, {0, ..., 255}
    assert in_channels == 3
    video = video.permute(0, 3, 1, 2).float() / 255.  # TCHW
    t, c, h, w = video.shape

    # temporal crop
    if sequence_length is not None:
        assert sequence_length <= t
        video = video[:sequence_length]

    # skip frames
    if sample_every_n_frames > 1:
        video = video[::sample_every_n_frames]

    # scale shorter side to resolution
    scale = resolution / min(h, w)
    if h < w:
        target_size = (resolution, math.ceil(w * scale))
    else:
        target_size = (math.ceil(h * scale), resolution)
    video = F.interpolate(video, size=target_size, mode='bilinear',
                          align_corners=False, antialias=True)

    # center crop
    t, c, h, w = video.shape
    w_start = (w - resolution) // 2
    h_start = (h - resolution) // 2
    video = video[:, :, h_start:h_start + resolution, w_start:w_start + resolution]
    video = video.permute(1, 0, 2, 3).contiguous()  # CTHW

    return {'video': video}


def preprocess_image(image):
    # [0, 1] => [-1, 1]
    img = torch.from_numpy(image)
    return img


class VideoData(data.Dataset):
    """ Class to create dataloaders for video datasets 

    Args:
        data_path: Path to the folder with video frames or videos.
        image_folder: If True, the data is stored as images in folders.
        resolution: Resolution of the returned videos.
        sequence_length: Length of extracted video sequences.
        sample_every_n_frames: Sample every n frames from the video.
        batch_size: Batch size.
        num_workers: Number of workers for the dataloader.
        shuffle: If True, shuffle the data.
    """

    def __init__(self, data_path: str, image_folder: bool, resolution: int, sequence_length: int,
                 sample_every_n_frames: int, batch_size: int, num_workers: int, shuffle: bool = True):
        super().__init__()
        self.data_path = data_path
        self.image_folder = image_folder
        self.resolution = resolution
        self.sequence_length = sequence_length
        self.sample_every_n_frames = sample_every_n_frames
        self.batch_size = batch_size
        self.num_workers = num_workers
        self.shuffle = shuffle

    def _dataset(self):
        '''
        Initializes and return the dataset.
        '''
        if self.image_folder:
            Dataset = FrameDataset
            dataset = Dataset(self.data_path, self.sequence_length,
                                resolution=self.resolution, sample_every_n_frames=self.sample_every_n_frames)
        else:
            Dataset = VideoDataset
            dataset = Dataset(self.data_path, self.sequence_length,
                              resolution=self.resolution, sample_every_n_frames=self.sample_every_n_frames)
        return dataset

    def _dataloader(self):
        '''
        Initializes and returns the dataloader.
        '''
        dataset = self._dataset()
        if dist.is_initialized():
            sampler = data.distributed.DistributedSampler(
                dataset, num_replicas=dist.get_world_size(), rank=dist.get_rank()
            )
        else:
            sampler = None
        dataloader = data.DataLoader(
            dataset,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            pin_memory=True,
            sampler=sampler,
            shuffle=sampler is None and self.shuffle is True
        )
        return dataloader


class VideoDataset(data.Dataset):
    """ 
    Generic dataset for videos files stored in folders.
    Videos of the same class are expected to be stored in a single folder. Multiple folders can exist in the provided directory.
    The class depends on `torchvision.datasets.video_utils.VideoClips` to load the videos.
    Returns BCTHW videos in the range [0, 1].

    Args:
        data_folder: Path to the folder with corresponding videos stored.
        sequence_length: Length of extracted video sequences.
        resolution: Resolution of the returned videos.
        sample_every_n_frames: Sample every n frames from the video.
    """

    def __init__(self, data_folder: str, sequence_length: int = 16, resolution: int = 128, sample_every_n_frames: int = 1):
        super().__init__()
        self.sequence_length = sequence_length
        self.resolution = resolution
        self.sample_every_n_frames = sample_every_n_frames

        folder = data_folder
        files = sum([glob.glob(osp.join(folder, '**', f'*{ext}'), recursive=True)
                     for ext in VID_EXTENSIONS], [])
    
        warnings.filterwarnings('ignore')
        cache_file = osp.join(folder, f"metadata_{sequence_length}.pkl")
        if not osp.exists(cache_file):
            clips = VideoClips(files, sequence_length, num_workers=4)
            try:
                pickle.dump(clips.metadata, open(cache_file, 'wb'))
            except:
                print(f"Failed to save metadata to {cache_file}")
        else:
            metadata = pickle.load(open(cache_file, 'rb'))
            clips = VideoClips(files, sequence_length,
                               _precomputed_metadata=metadata)

        self._clips = clips
        # instead of uniformly sampling from all possible clips, we sample uniformly from all possible videos
        self._clips.get_clip_location = self.get_random_clip_from_video
        
    def get_random_clip_from_video(self, idx: int) -> tuple:
        '''
        Sample a random clip starting index from the video.

        Args:
            idx: Index of the video.
        '''
        # Note that some videos may not contain enough frames, we skip those videos here.
        while self._clips.clips[idx].shape[0] <= 0:
            idx += 1
        n_clip = self._clips.clips[idx].shape[0]
        clip_id = random.randint(0, n_clip - 1)
        return idx, clip_id

    def __len__(self):
        return self._clips.num_videos()

    def __getitem__(self, idx):
        resolution = self.resolution
        while True:
            try:
                video, _, _, idx = self._clips.get_clip(idx)
            except Exception as e:
                print(idx, e)
                idx = (idx + 1) % self._clips.num_clips()
                continue
            break

        return dict(**preprocess(video, resolution, sample_every_n_frames=self.sample_every_n_frames))


class FrameDataset(data.Dataset):
    """ 
    Generic dataset for videos stored as images. The loading will iterates over all the folders and subfolders
        in the provided directory. Each leaf folder is assumed to contain frames from a single video.

    Args:
        data_folder: path to the folder with video frames. The folder
            should contain folders with frames from each video.
        sequence_length: length of extracted video sequences
        resolution: resolution of the returned videos
        sample_every_n_frames: sample every n frames from the video
    """

    def __init__(self, data_folder, sequence_length, resolution=64, sample_every_n_frames=1):
        self.resolution = resolution
        self.sequence_length = sequence_length
        self.sample_every_n_frames = sample_every_n_frames
        self.data_all = self.load_video_frames(data_folder)
        self.video_num = len(self.data_all)

    def __getitem__(self, index):
        batch_data = self.getTensor(index)
        return_list = {'video': batch_data}

        return return_list

    def load_video_frames(self, dataroot: str) -> list:
        '''
        Loads all the video frames under the dataroot and returns a list of all the video frames.

        Args:
            dataroot: The root directory containing the video frames.

        Returns:
            A list of all the video frames.

        '''
        data_all = []
        frame_list = os.walk(dataroot)
        for _, meta in enumerate(frame_list):
            root = meta[0]
            try:
                frames = sorted(meta[2], key=lambda item: int(item.split('.')[0].split('_')[-1]))
            except:
                print(meta[0], meta[2])
            if len(frames) < max(0, self.sequence_length * self.sample_every_n_frames):
                continue
            frames = [
                os.path.join(root, item) for item in frames
                if is_image_file(item)
            ]
            if len(frames) > max(0, self.sequence_length * self.sample_every_n_frames):
                data_all.append(frames)

        return data_all

    def getTensor(self, index: int) -> torch.Tensor:
        '''
        Returns a tensor of the video frames at the given index.

        Args:
            index: The index of the video frames to return.

        Returns:
            A BCTHW tensor in the range `[0, 1]` of the video frames at the given index.

        '''
        video = self.data_all[index]
        video_len = len(video)

        # load the entire video when sequence_length = -1, whiel the sample_every_n_frames has to be 1
        if self.sequence_length == -1:
            assert self.sample_every_n_frames == 1
            start_idx = 0
            end_idx = video_len
        else:
            n_frames_interval = self.sequence_length * self.sample_every_n_frames
            start_idx = random.randint(0, video_len - n_frames_interval)
            end_idx = start_idx + n_frames_interval
        img = Image.open(video[0])
        h, w = img.height, img.width

        if h > w:
            half = (h - w) // 2
            cropsize = (0, half, w, half + w)  # left, upper, right, lower
        elif w > h:
            half = (w - h) // 2
            cropsize = (half, 0, half + h, h)

        images = []
        for i in range(start_idx, end_idx,
                       self.sample_every_n_frames):
            path = video[i]
            img = Image.open(path)

            if h != w:
                img = img.crop(cropsize)

            img = img.resize(
                (self.resolution, self.resolution),
                Image.ANTIALIAS)
            img = np.asarray(img, dtype=np.float32)
            img /= 255.
            img_tensor = preprocess_image(img).unsqueeze(0)
            images.append(img_tensor)

        video_clip = torch.cat(images).permute(3, 0, 1, 2)
        return video_clip

    def __len__(self):
        return self.video_num