Spaces:
Runtime error
Runtime error
File size: 11,608 Bytes
3650c12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import imageio
import numpy as np
import json
from typing import Union
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torch.distributed as dist
from torchvision import transforms
from tqdm import tqdm
from einops import rearrange
import cv2
from decord import AudioReader, VideoReader
import shutil
import subprocess
# Machine epsilon for a float32 (single precision)
eps = np.finfo(np.float32).eps
def read_json(filepath: str):
with open(filepath) as f:
json_dict = json.load(f)
return json_dict
def read_video(video_path: str, change_fps=True, use_decord=True):
if change_fps:
temp_dir = "temp"
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
os.makedirs(temp_dir, exist_ok=True)
command = (
f"ffmpeg -loglevel error -y -nostdin -i {video_path} -r 25 -crf 18 {os.path.join(temp_dir, 'video.mp4')}"
)
subprocess.run(command, shell=True)
target_video_path = os.path.join(temp_dir, "video.mp4")
else:
target_video_path = video_path
if use_decord:
return read_video_decord(target_video_path)
else:
return read_video_cv2(target_video_path)
def read_video_decord(video_path: str):
vr = VideoReader(video_path)
video_frames = vr[:].asnumpy()
vr.seek(0)
return video_frames
def read_video_cv2(video_path: str):
# Open the video file
cap = cv2.VideoCapture(video_path)
# Check if the video was opened successfully
if not cap.isOpened():
print("Error: Could not open video.")
return np.array([])
frames = []
while True:
# Read a frame
ret, frame = cap.read()
# If frame is read correctly ret is True
if not ret:
break
# Convert BGR to RGB
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame_rgb)
# Release the video capture object
cap.release()
return np.array(frames)
def read_audio(audio_path: str, audio_sample_rate: int = 16000):
if audio_path is None:
raise ValueError("Audio path is required.")
ar = AudioReader(audio_path, sample_rate=audio_sample_rate, mono=True)
# To access the audio samples
audio_samples = torch.from_numpy(ar[:].asnumpy())
audio_samples = audio_samples.squeeze(0)
return audio_samples
def write_video(video_output_path: str, video_frames: np.ndarray, fps: int):
height, width = video_frames[0].shape[:2]
out = cv2.VideoWriter(video_output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
# out = cv2.VideoWriter(video_output_path, cv2.VideoWriter_fourcc(*"vp09"), fps, (width, height))
for frame in video_frames:
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
out.write(frame)
out.release()
def init_dist(backend="nccl", **kwargs):
"""Initializes distributed environment."""
rank = int(os.environ["RANK"])
num_gpus = torch.cuda.device_count()
if num_gpus == 0:
raise RuntimeError("No GPUs available for training.")
local_rank = rank % num_gpus
torch.cuda.set_device(local_rank)
dist.init_process_group(backend=backend, **kwargs)
return local_rank
def zero_rank_print(s):
if dist.is_initialized() and dist.get_rank() == 0:
print("### " + s)
def zero_rank_log(logger, message: str):
if dist.is_initialized() and dist.get_rank() == 0:
logger.info(message)
def make_audio_window(audio_embeddings: torch.Tensor, window_size: int):
audio_window = []
end_idx = audio_embeddings.shape[1] - window_size + 1
for i in range(end_idx):
audio_window.append(audio_embeddings[:, i : i + window_size, :])
audio_window = torch.stack(audio_window)
audio_window = rearrange(audio_window, "f b w d -> b f w d")
return audio_window
def check_video_fps(video_path: str):
cam = cv2.VideoCapture(video_path)
fps = cam.get(cv2.CAP_PROP_FPS)
if fps != 25:
raise ValueError(f"Video FPS is not 25, it is {fps}. Please convert the video to 25 FPS.")
def tailor_tensor_to_length(tensor: torch.Tensor, length: int):
if len(tensor) == length:
return tensor
elif len(tensor) > length:
return tensor[:length]
else:
return torch.cat([tensor, tensor[-1].repeat(length - len(tensor))])
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
videos = rearrange(videos, "b c f h w -> f b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
imageio.mimsave(path, outputs, fps=fps)
def interpolate_features(features: torch.Tensor, output_len: int) -> torch.Tensor:
features = features.cpu().numpy()
input_len, num_features = features.shape
input_timesteps = np.linspace(0, 10, input_len)
output_timesteps = np.linspace(0, 10, output_len)
output_features = np.zeros((output_len, num_features))
for feat in range(num_features):
output_features[:, feat] = np.interp(output_timesteps, input_timesteps, features[:, feat])
return torch.from_numpy(output_features)
# DDIM Inversion
@torch.no_grad()
def init_prompt(prompt, pipeline):
uncond_input = pipeline.tokenizer(
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length, return_tensors="pt"
)
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
text_input = pipeline.tokenizer(
[prompt],
padding="max_length",
max_length=pipeline.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
context = torch.cat([uncond_embeddings, text_embeddings])
return context
def reversed_forward(ddim_scheduler, pred_noise, timesteps, x_t):
# Compute alphas, betas
alpha_prod_t = ddim_scheduler.alphas_cumprod[timesteps]
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if ddim_scheduler.config.prediction_type == "epsilon":
beta_prod_t = beta_prod_t[:, None, None, None, None]
alpha_prod_t = alpha_prod_t[:, None, None, None, None]
pred_original_sample = (x_t - beta_prod_t ** (0.5) * pred_noise) / alpha_prod_t ** (0.5)
else:
raise NotImplementedError("This prediction type is not implemented yet")
# Clip "predicted x_0"
if ddim_scheduler.config.clip_sample:
pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
return pred_original_sample
def next_step(
model_output: Union[torch.FloatTensor, np.ndarray],
timestep: int,
sample: Union[torch.FloatTensor, np.ndarray],
ddim_scheduler,
):
timestep, next_timestep = (
min(timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999),
timestep,
)
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
beta_prod_t = 1 - alpha_prod_t
next_original_sample = (sample - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
next_sample = alpha_prod_t_next**0.5 * next_original_sample + next_sample_direction
return next_sample
def get_noise_pred_single(latents, t, context, unet):
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
return noise_pred
@torch.no_grad()
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
context = init_prompt(prompt, pipeline)
uncond_embeddings, cond_embeddings = context.chunk(2)
all_latent = [latent]
latent = latent.clone().detach()
for i in tqdm(range(num_inv_steps)):
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
latent = next_step(noise_pred, t, latent, ddim_scheduler)
all_latent.append(latent)
return all_latent
@torch.no_grad()
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
return ddim_latents
def plot_loss_chart(save_path: str, *args):
# Creating the plot
plt.figure()
for loss_line in args:
plt.plot(loss_line[1], loss_line[2], label=loss_line[0])
plt.xlabel("Step")
plt.ylabel("Loss")
plt.legend()
# Save the figure to a file
plt.savefig(save_path)
# Close the figure to free memory
plt.close()
CRED = "\033[91m"
CEND = "\033[0m"
def red_text(text: str):
return f"{CRED}{text}{CEND}"
log_loss = nn.BCELoss(reduction="none")
def cosine_loss(vision_embeds, audio_embeds, y):
sims = nn.functional.cosine_similarity(vision_embeds, audio_embeds)
# sims[sims!=sims] = 0 # remove nan
# sims = sims.clamp(0, 1)
loss = log_loss(sims.unsqueeze(1), y).squeeze()
return loss
def save_image(image, save_path):
# input size (C, H, W)
image = (image / 2 + 0.5).clamp(0, 1)
image = (image * 255).to(torch.uint8)
image = transforms.ToPILImage()(image)
# Save the image copy
image.save(save_path)
# Close the image file
image.close()
def gather_loss(loss, device):
# Sum the local loss across all processes
local_loss = loss.item()
global_loss = torch.tensor(local_loss, dtype=torch.float32).to(device)
dist.all_reduce(global_loss, op=dist.ReduceOp.SUM)
# Calculate the average loss across all processes
global_average_loss = global_loss.item() / dist.get_world_size()
return global_average_loss
def gather_video_paths_recursively(input_dir):
print(f"Recursively gathering video paths of {input_dir} ...")
paths = []
gather_video_paths(input_dir, paths)
return paths
def gather_video_paths(input_dir, paths):
for file in sorted(os.listdir(input_dir)):
if file.endswith(".mp4"):
filepath = os.path.join(input_dir, file)
paths.append(filepath)
elif os.path.isdir(os.path.join(input_dir, file)):
gather_video_paths(os.path.join(input_dir, file), paths)
def count_video_time(video_path):
video = cv2.VideoCapture(video_path)
frame_count = video.get(cv2.CAP_PROP_FRAME_COUNT)
fps = video.get(cv2.CAP_PROP_FPS)
return frame_count / fps
|