File size: 6,496 Bytes
3650c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Adapted from https://github.com/TMElyralab/MuseTalk/blob/main/musetalk/whisper/audio2feature.py

from .whisper import load_model
import numpy as np
import torch
import os


class Audio2Feature:
    def __init__(
        self,
        model_path="checkpoints/whisper/tiny.pt",
        device=None,
        audio_embeds_cache_dir=None,
        num_frames=16,
    ):
        self.model = load_model(model_path, device)
        self.audio_embeds_cache_dir = audio_embeds_cache_dir
        self.num_frames = num_frames
        self.embedding_dim = self.model.dims.n_audio_state

    def get_sliced_feature(self, feature_array, vid_idx, audio_feat_length=[2, 2], fps=25):
        """
        Get sliced features based on a given index
        :param feature_array:
        :param start_idx: the start index of the feature
        :param audio_feat_length:
        :return:
        """
        length = len(feature_array)
        selected_feature = []
        selected_idx = []

        center_idx = int(vid_idx * 50 / fps)
        left_idx = center_idx - audio_feat_length[0] * 2
        right_idx = center_idx + (audio_feat_length[1] + 1) * 2

        for idx in range(left_idx, right_idx):
            idx = max(0, idx)
            idx = min(length - 1, idx)
            x = feature_array[idx]
            selected_feature.append(x)
            selected_idx.append(idx)

        selected_feature = torch.cat(selected_feature, dim=0)
        selected_feature = selected_feature.reshape(-1, self.embedding_dim)  # 50*384
        return selected_feature, selected_idx

    def get_sliced_feature_sparse(self, feature_array, vid_idx, audio_feat_length=[2, 2], fps=25):
        """
        Get sliced features based on a given index
        :param feature_array:
        :param start_idx: the start index of the feature
        :param audio_feat_length:
        :return:
        """
        length = len(feature_array)
        selected_feature = []
        selected_idx = []

        for dt in range(-audio_feat_length[0], audio_feat_length[1] + 1):
            left_idx = int((vid_idx + dt) * 50 / fps)
            if left_idx < 1 or left_idx > length - 1:
                left_idx = max(0, left_idx)
                left_idx = min(length - 1, left_idx)

                x = feature_array[left_idx]
                x = x[np.newaxis, :, :]
                x = np.repeat(x, 2, axis=0)
                selected_feature.append(x)
                selected_idx.append(left_idx)
                selected_idx.append(left_idx)
            else:
                x = feature_array[left_idx - 1 : left_idx + 1]
                selected_feature.append(x)
                selected_idx.append(left_idx - 1)
                selected_idx.append(left_idx)
        selected_feature = np.concatenate(selected_feature, axis=0)
        selected_feature = selected_feature.reshape(-1, self.embedding_dim)  # 50*384
        selected_feature = torch.from_numpy(selected_feature)
        return selected_feature, selected_idx

    def feature2chunks(self, feature_array, fps, audio_feat_length=[2, 2]):
        whisper_chunks = []
        whisper_idx_multiplier = 50.0 / fps
        i = 0
        print(f"video in {fps} FPS, audio idx in 50FPS")

        while True:
            start_idx = int(i * whisper_idx_multiplier)
            selected_feature, selected_idx = self.get_sliced_feature(
                feature_array=feature_array, vid_idx=i, audio_feat_length=audio_feat_length, fps=fps
            )
            # print(f"i:{i},selected_idx {selected_idx}")
            whisper_chunks.append(selected_feature)
            i += 1
            if start_idx > len(feature_array):
                break

        return whisper_chunks

    def _audio2feat(self, audio_path: str):
        # get the sample rate of the audio
        result = self.model.transcribe(audio_path)
        embed_list = []
        for emb in result["segments"]:
            encoder_embeddings = emb["encoder_embeddings"]
            encoder_embeddings = encoder_embeddings.transpose(0, 2, 1, 3)
            encoder_embeddings = encoder_embeddings.squeeze(0)
            start_idx = int(emb["start"])
            end_idx = int(emb["end"])
            emb_end_idx = int((end_idx - start_idx) / 2)
            embed_list.append(encoder_embeddings[:emb_end_idx])
        concatenated_array = torch.from_numpy(np.concatenate(embed_list, axis=0))
        return concatenated_array

    def audio2feat(self, audio_path):
        if self.audio_embeds_cache_dir == "" or self.audio_embeds_cache_dir is None:
            return self._audio2feat(audio_path)

        audio_embeds_cache_path = os.path.join(self.audio_embeds_cache_dir, os.path.basename(audio_path) + ".pt")

        if os.path.isfile(audio_embeds_cache_path):
            try:
                audio_feat = torch.load(audio_embeds_cache_path)
            except Exception as e:
                print(f"{type(e).__name__} - {e} - {audio_embeds_cache_path}")
                os.remove(audio_embeds_cache_path)
                audio_feat = self._audio2feat(audio_path)
                torch.save(audio_feat, audio_embeds_cache_path)
        else:
            audio_feat = self._audio2feat(audio_path)
            torch.save(audio_feat, audio_embeds_cache_path)

        return audio_feat

    def crop_overlap_audio_window(self, audio_feat, start_index):
        selected_feature_list = []
        for i in range(start_index, start_index + self.num_frames):
            selected_feature, selected_idx = self.get_sliced_feature(
                feature_array=audio_feat, vid_idx=i, audio_feat_length=[2, 2], fps=25
            )
            selected_feature_list.append(selected_feature)
        mel_overlap = torch.stack(selected_feature_list)
        return mel_overlap


if __name__ == "__main__":
    audio_encoder = Audio2Feature(model_path="checkpoints/whisper/tiny.pt")
    audio_path = "assets/demo1_audio.wav"
    array = audio_encoder.audio2feat(audio_path)
    print(array.shape)
    fps = 25
    whisper_idx_multiplier = 50.0 / fps

    i = 0
    print(f"video in {fps} FPS, audio idx in 50FPS")
    while True:
        start_idx = int(i * whisper_idx_multiplier)
        selected_feature, selected_idx = audio_encoder.get_sliced_feature(
            feature_array=array, vid_idx=i, audio_feat_length=[2, 2], fps=fps
        )
        print(f"video idx {i},\t audio idx {selected_idx},\t shape {selected_feature.shape}")
        i += 1
        if start_idx > len(array):
            break