Spaces:
Runtime error
Runtime error
File size: 21,797 Bytes
3650c12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import math
import argparse
import shutil
import datetime
import logging
from omegaconf import OmegaConf
from tqdm.auto import tqdm
from einops import rearrange
import torch
import torch.nn.functional as F
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import diffusers
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils.logging import get_logger
from diffusers.optimization import get_scheduler
from diffusers.utils.import_utils import is_xformers_available
from accelerate.utils import set_seed
from latentsync.data.unet_dataset import UNetDataset
from latentsync.models.unet import UNet3DConditionModel
from latentsync.models.syncnet import SyncNet
from latentsync.pipelines.lipsync_pipeline import LipsyncPipeline
from latentsync.utils.util import (
init_dist,
cosine_loss,
reversed_forward,
)
from latentsync.utils.util import plot_loss_chart, gather_loss
from latentsync.whisper.audio2feature import Audio2Feature
from latentsync.trepa import TREPALoss
from eval.syncnet import SyncNetEval
from eval.syncnet_detect import SyncNetDetector
from eval.eval_sync_conf import syncnet_eval
import lpips
logger = get_logger(__name__)
def main(config):
# Initialize distributed training
local_rank = init_dist()
global_rank = dist.get_rank()
num_processes = dist.get_world_size()
is_main_process = global_rank == 0
seed = config.run.seed + global_rank
set_seed(seed)
# Logging folder
folder_name = "train" + datetime.datetime.now().strftime(f"-%Y_%m_%d-%H:%M:%S")
output_dir = os.path.join(config.data.train_output_dir, folder_name)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Handle the output folder creation
if is_main_process:
diffusers.utils.logging.set_verbosity_info()
os.makedirs(output_dir, exist_ok=True)
os.makedirs(f"{output_dir}/checkpoints", exist_ok=True)
os.makedirs(f"{output_dir}/val_videos", exist_ok=True)
os.makedirs(f"{output_dir}/loss_charts", exist_ok=True)
shutil.copy(config.unet_config_path, output_dir)
shutil.copy(config.data.syncnet_config_path, output_dir)
device = torch.device(local_rank)
noise_scheduler = DDIMScheduler.from_pretrained("configs")
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
vae.config.scaling_factor = 0.18215
vae.config.shift_factor = 0
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
vae.requires_grad_(False)
vae.to(device)
syncnet_eval_model = SyncNetEval(device=device)
syncnet_eval_model.loadParameters("checkpoints/auxiliary/syncnet_v2.model")
syncnet_detector = SyncNetDetector(device=device, detect_results_dir="detect_results")
if config.model.cross_attention_dim == 768:
whisper_model_path = "checkpoints/whisper/small.pt"
elif config.model.cross_attention_dim == 384:
whisper_model_path = "checkpoints/whisper/tiny.pt"
else:
raise NotImplementedError("cross_attention_dim must be 768 or 384")
audio_encoder = Audio2Feature(
model_path=whisper_model_path,
device=device,
audio_embeds_cache_dir=config.data.audio_embeds_cache_dir,
num_frames=config.data.num_frames,
)
unet, resume_global_step = UNet3DConditionModel.from_pretrained(
OmegaConf.to_container(config.model),
config.ckpt.resume_ckpt_path, # load checkpoint
device=device,
)
if config.model.add_audio_layer and config.run.use_syncnet:
syncnet_config = OmegaConf.load(config.data.syncnet_config_path)
if syncnet_config.ckpt.inference_ckpt_path == "":
raise ValueError("SyncNet path is not provided")
syncnet = SyncNet(OmegaConf.to_container(syncnet_config.model)).to(device=device, dtype=torch.float16)
syncnet_checkpoint = torch.load(syncnet_config.ckpt.inference_ckpt_path, map_location=device)
syncnet.load_state_dict(syncnet_checkpoint["state_dict"])
syncnet.requires_grad_(False)
unet.requires_grad_(True)
trainable_params = list(unet.parameters())
if config.optimizer.scale_lr:
config.optimizer.lr = config.optimizer.lr * num_processes
optimizer = torch.optim.AdamW(trainable_params, lr=config.optimizer.lr)
if is_main_process:
logger.info(f"trainable params number: {len(trainable_params)}")
logger.info(f"trainable params scale: {sum(p.numel() for p in trainable_params) / 1e6:.3f} M")
# Enable xformers
if config.run.enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# Enable gradient checkpointing
if config.run.enable_gradient_checkpointing:
unet.enable_gradient_checkpointing()
# Get the training dataset
train_dataset = UNetDataset(config.data.train_data_dir, config)
distributed_sampler = DistributedSampler(
train_dataset,
num_replicas=num_processes,
rank=global_rank,
shuffle=True,
seed=config.run.seed,
)
# DataLoaders creation:
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=config.data.batch_size,
shuffle=False,
sampler=distributed_sampler,
num_workers=config.data.num_workers,
pin_memory=False,
drop_last=True,
worker_init_fn=train_dataset.worker_init_fn,
)
# Get the training iteration
if config.run.max_train_steps == -1:
assert config.run.max_train_epochs != -1
config.run.max_train_steps = config.run.max_train_epochs * len(train_dataloader)
# Scheduler
lr_scheduler = get_scheduler(
config.optimizer.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=config.optimizer.lr_warmup_steps,
num_training_steps=config.run.max_train_steps,
)
if config.run.perceptual_loss_weight != 0 and config.run.pixel_space_supervise:
lpips_loss_func = lpips.LPIPS(net="vgg").to(device)
if config.run.trepa_loss_weight != 0 and config.run.pixel_space_supervise:
trepa_loss_func = TREPALoss(device=device)
# Validation pipeline
pipeline = LipsyncPipeline(
vae=vae,
audio_encoder=audio_encoder,
unet=unet,
scheduler=noise_scheduler,
).to(device)
pipeline.set_progress_bar_config(disable=True)
# DDP warpper
unet = DDP(unet, device_ids=[local_rank], output_device=local_rank)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader))
# Afterwards we recalculate our number of training epochs
num_train_epochs = math.ceil(config.run.max_train_steps / num_update_steps_per_epoch)
# Train!
total_batch_size = config.data.batch_size * num_processes
if is_main_process:
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {config.data.batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Total optimization steps = {config.run.max_train_steps}")
global_step = resume_global_step
first_epoch = resume_global_step // num_update_steps_per_epoch
# Only show the progress bar once on each machine.
progress_bar = tqdm(
range(0, config.run.max_train_steps),
initial=resume_global_step,
desc="Steps",
disable=not is_main_process,
)
train_step_list = []
sync_loss_list = []
recon_loss_list = []
val_step_list = []
sync_conf_list = []
# Support mixed-precision training
scaler = torch.cuda.amp.GradScaler() if config.run.mixed_precision_training else None
for epoch in range(first_epoch, num_train_epochs):
train_dataloader.sampler.set_epoch(epoch)
unet.train()
for step, batch in enumerate(train_dataloader):
### >>>> Training >>>> ###
if config.model.add_audio_layer:
if batch["mel"] != []:
mel = batch["mel"].to(device, dtype=torch.float16)
audio_embeds_list = []
try:
for idx in range(len(batch["video_path"])):
video_path = batch["video_path"][idx]
start_idx = batch["start_idx"][idx]
with torch.no_grad():
audio_feat = audio_encoder.audio2feat(video_path)
audio_embeds = audio_encoder.crop_overlap_audio_window(audio_feat, start_idx)
audio_embeds_list.append(audio_embeds)
except Exception as e:
logger.info(f"{type(e).__name__} - {e} - {video_path}")
continue
audio_embeds = torch.stack(audio_embeds_list) # (B, 16, 50, 384)
audio_embeds = audio_embeds.to(device, dtype=torch.float16)
else:
audio_embeds = None
# Convert videos to latent space
gt_images = batch["gt"].to(device, dtype=torch.float16)
gt_masked_images = batch["masked_gt"].to(device, dtype=torch.float16)
mask = batch["mask"].to(device, dtype=torch.float16)
ref_images = batch["ref"].to(device, dtype=torch.float16)
gt_images = rearrange(gt_images, "b f c h w -> (b f) c h w")
gt_masked_images = rearrange(gt_masked_images, "b f c h w -> (b f) c h w")
mask = rearrange(mask, "b f c h w -> (b f) c h w")
ref_images = rearrange(ref_images, "b f c h w -> (b f) c h w")
with torch.no_grad():
gt_latents = vae.encode(gt_images).latent_dist.sample()
gt_masked_images = vae.encode(gt_masked_images).latent_dist.sample()
ref_images = vae.encode(ref_images).latent_dist.sample()
mask = torch.nn.functional.interpolate(mask, size=config.data.resolution // vae_scale_factor)
gt_latents = (
rearrange(gt_latents, "(b f) c h w -> b c f h w", f=config.data.num_frames) - vae.config.shift_factor
) * vae.config.scaling_factor
gt_masked_images = (
rearrange(gt_masked_images, "(b f) c h w -> b c f h w", f=config.data.num_frames)
- vae.config.shift_factor
) * vae.config.scaling_factor
ref_images = (
rearrange(ref_images, "(b f) c h w -> b c f h w", f=config.data.num_frames) - vae.config.shift_factor
) * vae.config.scaling_factor
mask = rearrange(mask, "(b f) c h w -> b c f h w", f=config.data.num_frames)
# Sample noise that we'll add to the latents
if config.run.use_mixed_noise:
# Refer to the paper: https://arxiv.org/abs/2305.10474
noise_shared_std_dev = (config.run.mixed_noise_alpha**2 / (1 + config.run.mixed_noise_alpha**2)) ** 0.5
noise_shared = torch.randn_like(gt_latents) * noise_shared_std_dev
noise_shared = noise_shared[:, :, 0:1].repeat(1, 1, config.data.num_frames, 1, 1)
noise_ind_std_dev = (1 / (1 + config.run.mixed_noise_alpha**2)) ** 0.5
noise_ind = torch.randn_like(gt_latents) * noise_ind_std_dev
noise = noise_ind + noise_shared
else:
noise = torch.randn_like(gt_latents)
noise = noise[:, :, 0:1].repeat(
1, 1, config.data.num_frames, 1, 1
) # Using the same noise for all frames, refer to the paper: https://arxiv.org/abs/2308.09716
bsz = gt_latents.shape[0]
# Sample a random timestep for each video
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=gt_latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_tensor = noise_scheduler.add_noise(gt_latents, noise, timesteps)
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
raise NotImplementedError
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
unet_input = torch.cat([noisy_tensor, mask, gt_masked_images, ref_images], dim=1)
# Predict the noise and compute loss
# Mixed-precision training
with torch.autocast(device_type="cuda", dtype=torch.float16, enabled=config.run.mixed_precision_training):
pred_noise = unet(unet_input, timesteps, encoder_hidden_states=audio_embeds).sample
if config.run.recon_loss_weight != 0:
recon_loss = F.mse_loss(pred_noise.float(), target.float(), reduction="mean")
else:
recon_loss = 0
pred_latents = reversed_forward(noise_scheduler, pred_noise, timesteps, noisy_tensor)
if config.run.pixel_space_supervise:
pred_images = vae.decode(
rearrange(pred_latents, "b c f h w -> (b f) c h w") / vae.config.scaling_factor
+ vae.config.shift_factor
).sample
if config.run.perceptual_loss_weight != 0 and config.run.pixel_space_supervise:
pred_images_perceptual = pred_images[:, :, pred_images.shape[2] // 2 :, :]
gt_images_perceptual = gt_images[:, :, gt_images.shape[2] // 2 :, :]
lpips_loss = lpips_loss_func(pred_images_perceptual.float(), gt_images_perceptual.float()).mean()
else:
lpips_loss = 0
if config.run.trepa_loss_weight != 0 and config.run.pixel_space_supervise:
trepa_pred_images = rearrange(pred_images, "(b f) c h w -> b c f h w", f=config.data.num_frames)
trepa_gt_images = rearrange(gt_images, "(b f) c h w -> b c f h w", f=config.data.num_frames)
trepa_loss = trepa_loss_func(trepa_pred_images, trepa_gt_images)
else:
trepa_loss = 0
if config.model.add_audio_layer and config.run.use_syncnet:
if config.run.pixel_space_supervise:
syncnet_input = rearrange(pred_images, "(b f) c h w -> b (f c) h w", f=config.data.num_frames)
else:
syncnet_input = rearrange(pred_latents, "b c f h w -> b (f c) h w")
if syncnet_config.data.lower_half:
height = syncnet_input.shape[2]
syncnet_input = syncnet_input[:, :, height // 2 :, :]
ones_tensor = torch.ones((config.data.batch_size, 1)).float().to(device=device)
vision_embeds, audio_embeds = syncnet(syncnet_input, mel)
sync_loss = cosine_loss(vision_embeds.float(), audio_embeds.float(), ones_tensor).mean()
sync_loss_list.append(gather_loss(sync_loss, device))
else:
sync_loss = 0
loss = (
recon_loss * config.run.recon_loss_weight
+ sync_loss * config.run.sync_loss_weight
+ lpips_loss * config.run.perceptual_loss_weight
+ trepa_loss * config.run.trepa_loss_weight
)
train_step_list.append(global_step)
if config.run.recon_loss_weight != 0:
recon_loss_list.append(gather_loss(recon_loss, device))
optimizer.zero_grad()
# Backpropagate
if config.run.mixed_precision_training:
scaler.scale(loss).backward()
""" >>> gradient clipping >>> """
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(unet.parameters(), config.optimizer.max_grad_norm)
""" <<< gradient clipping <<< """
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
""" >>> gradient clipping >>> """
torch.nn.utils.clip_grad_norm_(unet.parameters(), config.optimizer.max_grad_norm)
""" <<< gradient clipping <<< """
optimizer.step()
# Check the grad of attn blocks for debugging
# print(unet.module.up_blocks[3].attentions[2].transformer_blocks[0].audio_cross_attn.attn.to_q.weight.grad)
lr_scheduler.step()
progress_bar.update(1)
global_step += 1
### <<<< Training <<<< ###
# Save checkpoint and conduct validation
if is_main_process and (global_step % config.ckpt.save_ckpt_steps == 0):
if config.run.recon_loss_weight != 0:
plot_loss_chart(
os.path.join(output_dir, f"loss_charts/recon_loss_chart-{global_step}.png"),
("Reconstruction loss", train_step_list, recon_loss_list),
)
if config.model.add_audio_layer:
if sync_loss_list != []:
plot_loss_chart(
os.path.join(output_dir, f"loss_charts/sync_loss_chart-{global_step}.png"),
("Sync loss", train_step_list, sync_loss_list),
)
model_save_path = os.path.join(output_dir, f"checkpoints/checkpoint-{global_step}.pt")
state_dict = {
"global_step": global_step,
"state_dict": unet.module.state_dict(), # to unwrap DDP
}
try:
torch.save(state_dict, model_save_path)
logger.info(f"Saved checkpoint to {model_save_path}")
except Exception as e:
logger.error(f"Error saving model: {e}")
# Validation
logger.info("Running validation... ")
validation_video_out_path = os.path.join(output_dir, f"val_videos/val_video_{global_step}.mp4")
validation_video_mask_path = os.path.join(output_dir, f"val_videos/val_video_mask.mp4")
with torch.autocast(device_type="cuda", dtype=torch.float16):
pipeline(
config.data.val_video_path,
config.data.val_audio_path,
validation_video_out_path,
validation_video_mask_path,
num_frames=config.data.num_frames,
num_inference_steps=config.run.inference_steps,
guidance_scale=config.run.guidance_scale,
weight_dtype=torch.float16,
width=config.data.resolution,
height=config.data.resolution,
mask=config.data.mask,
)
logger.info(f"Saved validation video output to {validation_video_out_path}")
val_step_list.append(global_step)
if config.model.add_audio_layer:
try:
_, conf = syncnet_eval(syncnet_eval_model, syncnet_detector, validation_video_out_path, "temp")
except Exception as e:
logger.info(e)
conf = 0
sync_conf_list.append(conf)
plot_loss_chart(
os.path.join(output_dir, f"loss_charts/sync_conf_chart-{global_step}.png"),
("Sync confidence", val_step_list, sync_conf_list),
)
logs = {"step_loss": loss.item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= config.run.max_train_steps:
break
progress_bar.close()
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Config file path
parser.add_argument("--unet_config_path", type=str, default="configs/unet.yaml")
args = parser.parse_args()
config = OmegaConf.load(args.unet_config_path)
config.unet_config_path = args.unet_config_path
main(config)
|