File size: 21,797 Bytes
3650c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import math
import argparse
import shutil
import datetime
import logging
from omegaconf import OmegaConf

from tqdm.auto import tqdm
from einops import rearrange

import torch
import torch.nn.functional as F
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP

import diffusers
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils.logging import get_logger
from diffusers.optimization import get_scheduler
from diffusers.utils.import_utils import is_xformers_available
from accelerate.utils import set_seed

from latentsync.data.unet_dataset import UNetDataset
from latentsync.models.unet import UNet3DConditionModel
from latentsync.models.syncnet import SyncNet
from latentsync.pipelines.lipsync_pipeline import LipsyncPipeline
from latentsync.utils.util import (
    init_dist,
    cosine_loss,
    reversed_forward,
)
from latentsync.utils.util import plot_loss_chart, gather_loss
from latentsync.whisper.audio2feature import Audio2Feature
from latentsync.trepa import TREPALoss
from eval.syncnet import SyncNetEval
from eval.syncnet_detect import SyncNetDetector
from eval.eval_sync_conf import syncnet_eval
import lpips


logger = get_logger(__name__)


def main(config):
    # Initialize distributed training
    local_rank = init_dist()
    global_rank = dist.get_rank()
    num_processes = dist.get_world_size()
    is_main_process = global_rank == 0

    seed = config.run.seed + global_rank
    set_seed(seed)

    # Logging folder
    folder_name = "train" + datetime.datetime.now().strftime(f"-%Y_%m_%d-%H:%M:%S")
    output_dir = os.path.join(config.data.train_output_dir, folder_name)

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )

    # Handle the output folder creation
    if is_main_process:
        diffusers.utils.logging.set_verbosity_info()
        os.makedirs(output_dir, exist_ok=True)
        os.makedirs(f"{output_dir}/checkpoints", exist_ok=True)
        os.makedirs(f"{output_dir}/val_videos", exist_ok=True)
        os.makedirs(f"{output_dir}/loss_charts", exist_ok=True)
        shutil.copy(config.unet_config_path, output_dir)
        shutil.copy(config.data.syncnet_config_path, output_dir)

    device = torch.device(local_rank)

    noise_scheduler = DDIMScheduler.from_pretrained("configs")

    vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
    vae.config.scaling_factor = 0.18215
    vae.config.shift_factor = 0
    vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
    vae.requires_grad_(False)
    vae.to(device)

    syncnet_eval_model = SyncNetEval(device=device)
    syncnet_eval_model.loadParameters("checkpoints/auxiliary/syncnet_v2.model")

    syncnet_detector = SyncNetDetector(device=device, detect_results_dir="detect_results")

    if config.model.cross_attention_dim == 768:
        whisper_model_path = "checkpoints/whisper/small.pt"
    elif config.model.cross_attention_dim == 384:
        whisper_model_path = "checkpoints/whisper/tiny.pt"
    else:
        raise NotImplementedError("cross_attention_dim must be 768 or 384")

    audio_encoder = Audio2Feature(
        model_path=whisper_model_path,
        device=device,
        audio_embeds_cache_dir=config.data.audio_embeds_cache_dir,
        num_frames=config.data.num_frames,
    )

    unet, resume_global_step = UNet3DConditionModel.from_pretrained(
        OmegaConf.to_container(config.model),
        config.ckpt.resume_ckpt_path,  # load checkpoint
        device=device,
    )

    if config.model.add_audio_layer and config.run.use_syncnet:
        syncnet_config = OmegaConf.load(config.data.syncnet_config_path)
        if syncnet_config.ckpt.inference_ckpt_path == "":
            raise ValueError("SyncNet path is not provided")
        syncnet = SyncNet(OmegaConf.to_container(syncnet_config.model)).to(device=device, dtype=torch.float16)
        syncnet_checkpoint = torch.load(syncnet_config.ckpt.inference_ckpt_path, map_location=device)
        syncnet.load_state_dict(syncnet_checkpoint["state_dict"])
        syncnet.requires_grad_(False)

    unet.requires_grad_(True)
    trainable_params = list(unet.parameters())

    if config.optimizer.scale_lr:
        config.optimizer.lr = config.optimizer.lr * num_processes

    optimizer = torch.optim.AdamW(trainable_params, lr=config.optimizer.lr)

    if is_main_process:
        logger.info(f"trainable params number: {len(trainable_params)}")
        logger.info(f"trainable params scale: {sum(p.numel() for p in trainable_params) / 1e6:.3f} M")

    # Enable xformers
    if config.run.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    # Enable gradient checkpointing
    if config.run.enable_gradient_checkpointing:
        unet.enable_gradient_checkpointing()

    # Get the training dataset
    train_dataset = UNetDataset(config.data.train_data_dir, config)
    distributed_sampler = DistributedSampler(
        train_dataset,
        num_replicas=num_processes,
        rank=global_rank,
        shuffle=True,
        seed=config.run.seed,
    )

    # DataLoaders creation:
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=config.data.batch_size,
        shuffle=False,
        sampler=distributed_sampler,
        num_workers=config.data.num_workers,
        pin_memory=False,
        drop_last=True,
        worker_init_fn=train_dataset.worker_init_fn,
    )

    # Get the training iteration
    if config.run.max_train_steps == -1:
        assert config.run.max_train_epochs != -1
        config.run.max_train_steps = config.run.max_train_epochs * len(train_dataloader)

    # Scheduler
    lr_scheduler = get_scheduler(
        config.optimizer.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=config.optimizer.lr_warmup_steps,
        num_training_steps=config.run.max_train_steps,
    )

    if config.run.perceptual_loss_weight != 0 and config.run.pixel_space_supervise:
        lpips_loss_func = lpips.LPIPS(net="vgg").to(device)

    if config.run.trepa_loss_weight != 0 and config.run.pixel_space_supervise:
        trepa_loss_func = TREPALoss(device=device)

    # Validation pipeline
    pipeline = LipsyncPipeline(
        vae=vae,
        audio_encoder=audio_encoder,
        unet=unet,
        scheduler=noise_scheduler,
    ).to(device)
    pipeline.set_progress_bar_config(disable=True)

    # DDP warpper
    unet = DDP(unet, device_ids=[local_rank], output_device=local_rank)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader))
    # Afterwards we recalculate our number of training epochs
    num_train_epochs = math.ceil(config.run.max_train_steps / num_update_steps_per_epoch)

    # Train!
    total_batch_size = config.data.batch_size * num_processes

    if is_main_process:
        logger.info("***** Running training *****")
        logger.info(f"  Num examples = {len(train_dataset)}")
        logger.info(f"  Num Epochs = {num_train_epochs}")
        logger.info(f"  Instantaneous batch size per device = {config.data.batch_size}")
        logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
        logger.info(f"  Total optimization steps = {config.run.max_train_steps}")
    global_step = resume_global_step
    first_epoch = resume_global_step // num_update_steps_per_epoch

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(
        range(0, config.run.max_train_steps),
        initial=resume_global_step,
        desc="Steps",
        disable=not is_main_process,
    )

    train_step_list = []
    sync_loss_list = []
    recon_loss_list = []

    val_step_list = []
    sync_conf_list = []

    # Support mixed-precision training
    scaler = torch.cuda.amp.GradScaler() if config.run.mixed_precision_training else None

    for epoch in range(first_epoch, num_train_epochs):
        train_dataloader.sampler.set_epoch(epoch)
        unet.train()

        for step, batch in enumerate(train_dataloader):
            ### >>>> Training >>>> ###

            if config.model.add_audio_layer:
                if batch["mel"] != []:
                    mel = batch["mel"].to(device, dtype=torch.float16)

                audio_embeds_list = []
                try:
                    for idx in range(len(batch["video_path"])):
                        video_path = batch["video_path"][idx]
                        start_idx = batch["start_idx"][idx]

                        with torch.no_grad():
                            audio_feat = audio_encoder.audio2feat(video_path)
                        audio_embeds = audio_encoder.crop_overlap_audio_window(audio_feat, start_idx)
                        audio_embeds_list.append(audio_embeds)
                except Exception as e:
                    logger.info(f"{type(e).__name__} - {e} - {video_path}")
                    continue
                audio_embeds = torch.stack(audio_embeds_list)  # (B, 16, 50, 384)
                audio_embeds = audio_embeds.to(device, dtype=torch.float16)
            else:
                audio_embeds = None

            # Convert videos to latent space
            gt_images = batch["gt"].to(device, dtype=torch.float16)
            gt_masked_images = batch["masked_gt"].to(device, dtype=torch.float16)
            mask = batch["mask"].to(device, dtype=torch.float16)
            ref_images = batch["ref"].to(device, dtype=torch.float16)

            gt_images = rearrange(gt_images, "b f c h w -> (b f) c h w")
            gt_masked_images = rearrange(gt_masked_images, "b f c h w -> (b f) c h w")
            mask = rearrange(mask, "b f c h w -> (b f) c h w")
            ref_images = rearrange(ref_images, "b f c h w -> (b f) c h w")

            with torch.no_grad():
                gt_latents = vae.encode(gt_images).latent_dist.sample()
                gt_masked_images = vae.encode(gt_masked_images).latent_dist.sample()
                ref_images = vae.encode(ref_images).latent_dist.sample()

            mask = torch.nn.functional.interpolate(mask, size=config.data.resolution // vae_scale_factor)

            gt_latents = (
                rearrange(gt_latents, "(b f) c h w -> b c f h w", f=config.data.num_frames) - vae.config.shift_factor
            ) * vae.config.scaling_factor
            gt_masked_images = (
                rearrange(gt_masked_images, "(b f) c h w -> b c f h w", f=config.data.num_frames)
                - vae.config.shift_factor
            ) * vae.config.scaling_factor
            ref_images = (
                rearrange(ref_images, "(b f) c h w -> b c f h w", f=config.data.num_frames) - vae.config.shift_factor
            ) * vae.config.scaling_factor
            mask = rearrange(mask, "(b f) c h w -> b c f h w", f=config.data.num_frames)

            # Sample noise that we'll add to the latents
            if config.run.use_mixed_noise:
                # Refer to the paper: https://arxiv.org/abs/2305.10474
                noise_shared_std_dev = (config.run.mixed_noise_alpha**2 / (1 + config.run.mixed_noise_alpha**2)) ** 0.5
                noise_shared = torch.randn_like(gt_latents) * noise_shared_std_dev
                noise_shared = noise_shared[:, :, 0:1].repeat(1, 1, config.data.num_frames, 1, 1)

                noise_ind_std_dev = (1 / (1 + config.run.mixed_noise_alpha**2)) ** 0.5
                noise_ind = torch.randn_like(gt_latents) * noise_ind_std_dev
                noise = noise_ind + noise_shared
            else:
                noise = torch.randn_like(gt_latents)
                noise = noise[:, :, 0:1].repeat(
                    1, 1, config.data.num_frames, 1, 1
                )  # Using the same noise for all frames, refer to the paper: https://arxiv.org/abs/2308.09716

            bsz = gt_latents.shape[0]

            # Sample a random timestep for each video
            timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=gt_latents.device)
            timesteps = timesteps.long()

            # Add noise to the latents according to the noise magnitude at each timestep
            # (this is the forward diffusion process)
            noisy_tensor = noise_scheduler.add_noise(gt_latents, noise, timesteps)

            # Get the target for loss depending on the prediction type
            if noise_scheduler.config.prediction_type == "epsilon":
                target = noise
            elif noise_scheduler.config.prediction_type == "v_prediction":
                raise NotImplementedError
            else:
                raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

            unet_input = torch.cat([noisy_tensor, mask, gt_masked_images, ref_images], dim=1)

            # Predict the noise and compute loss
            # Mixed-precision training
            with torch.autocast(device_type="cuda", dtype=torch.float16, enabled=config.run.mixed_precision_training):
                pred_noise = unet(unet_input, timesteps, encoder_hidden_states=audio_embeds).sample

            if config.run.recon_loss_weight != 0:
                recon_loss = F.mse_loss(pred_noise.float(), target.float(), reduction="mean")
            else:
                recon_loss = 0

            pred_latents = reversed_forward(noise_scheduler, pred_noise, timesteps, noisy_tensor)

            if config.run.pixel_space_supervise:
                pred_images = vae.decode(
                    rearrange(pred_latents, "b c f h w -> (b f) c h w") / vae.config.scaling_factor
                    + vae.config.shift_factor
                ).sample

            if config.run.perceptual_loss_weight != 0 and config.run.pixel_space_supervise:
                pred_images_perceptual = pred_images[:, :, pred_images.shape[2] // 2 :, :]
                gt_images_perceptual = gt_images[:, :, gt_images.shape[2] // 2 :, :]
                lpips_loss = lpips_loss_func(pred_images_perceptual.float(), gt_images_perceptual.float()).mean()
            else:
                lpips_loss = 0

            if config.run.trepa_loss_weight != 0 and config.run.pixel_space_supervise:
                trepa_pred_images = rearrange(pred_images, "(b f) c h w -> b c f h w", f=config.data.num_frames)
                trepa_gt_images = rearrange(gt_images, "(b f) c h w -> b c f h w", f=config.data.num_frames)
                trepa_loss = trepa_loss_func(trepa_pred_images, trepa_gt_images)
            else:
                trepa_loss = 0

            if config.model.add_audio_layer and config.run.use_syncnet:
                if config.run.pixel_space_supervise:
                    syncnet_input = rearrange(pred_images, "(b f) c h w -> b (f c) h w", f=config.data.num_frames)
                else:
                    syncnet_input = rearrange(pred_latents, "b c f h w -> b (f c) h w")

                if syncnet_config.data.lower_half:
                    height = syncnet_input.shape[2]
                    syncnet_input = syncnet_input[:, :, height // 2 :, :]
                ones_tensor = torch.ones((config.data.batch_size, 1)).float().to(device=device)
                vision_embeds, audio_embeds = syncnet(syncnet_input, mel)
                sync_loss = cosine_loss(vision_embeds.float(), audio_embeds.float(), ones_tensor).mean()
                sync_loss_list.append(gather_loss(sync_loss, device))
            else:
                sync_loss = 0

            loss = (
                recon_loss * config.run.recon_loss_weight
                + sync_loss * config.run.sync_loss_weight
                + lpips_loss * config.run.perceptual_loss_weight
                + trepa_loss * config.run.trepa_loss_weight
            )

            train_step_list.append(global_step)
            if config.run.recon_loss_weight != 0:
                recon_loss_list.append(gather_loss(recon_loss, device))

            optimizer.zero_grad()

            # Backpropagate
            if config.run.mixed_precision_training:
                scaler.scale(loss).backward()
                """ >>> gradient clipping >>> """
                scaler.unscale_(optimizer)
                torch.nn.utils.clip_grad_norm_(unet.parameters(), config.optimizer.max_grad_norm)
                """ <<< gradient clipping <<< """
                scaler.step(optimizer)
                scaler.update()
            else:
                loss.backward()
                """ >>> gradient clipping >>> """
                torch.nn.utils.clip_grad_norm_(unet.parameters(), config.optimizer.max_grad_norm)
                """ <<< gradient clipping <<< """
                optimizer.step()

            # Check the grad of attn blocks for debugging
            # print(unet.module.up_blocks[3].attentions[2].transformer_blocks[0].audio_cross_attn.attn.to_q.weight.grad)

            lr_scheduler.step()
            progress_bar.update(1)
            global_step += 1

            ### <<<< Training <<<< ###

            # Save checkpoint and conduct validation
            if is_main_process and (global_step % config.ckpt.save_ckpt_steps == 0):
                if config.run.recon_loss_weight != 0:
                    plot_loss_chart(
                        os.path.join(output_dir, f"loss_charts/recon_loss_chart-{global_step}.png"),
                        ("Reconstruction loss", train_step_list, recon_loss_list),
                    )
                if config.model.add_audio_layer:
                    if sync_loss_list != []:
                        plot_loss_chart(
                            os.path.join(output_dir, f"loss_charts/sync_loss_chart-{global_step}.png"),
                            ("Sync loss", train_step_list, sync_loss_list),
                        )
                model_save_path = os.path.join(output_dir, f"checkpoints/checkpoint-{global_step}.pt")
                state_dict = {
                    "global_step": global_step,
                    "state_dict": unet.module.state_dict(),  # to unwrap DDP
                }
                try:
                    torch.save(state_dict, model_save_path)
                    logger.info(f"Saved checkpoint to {model_save_path}")
                except Exception as e:
                    logger.error(f"Error saving model: {e}")

                # Validation
                logger.info("Running validation... ")

                validation_video_out_path = os.path.join(output_dir, f"val_videos/val_video_{global_step}.mp4")
                validation_video_mask_path = os.path.join(output_dir, f"val_videos/val_video_mask.mp4")

                with torch.autocast(device_type="cuda", dtype=torch.float16):
                    pipeline(
                        config.data.val_video_path,
                        config.data.val_audio_path,
                        validation_video_out_path,
                        validation_video_mask_path,
                        num_frames=config.data.num_frames,
                        num_inference_steps=config.run.inference_steps,
                        guidance_scale=config.run.guidance_scale,
                        weight_dtype=torch.float16,
                        width=config.data.resolution,
                        height=config.data.resolution,
                        mask=config.data.mask,
                    )

                logger.info(f"Saved validation video output to {validation_video_out_path}")

                val_step_list.append(global_step)

                if config.model.add_audio_layer:
                    try:
                        _, conf = syncnet_eval(syncnet_eval_model, syncnet_detector, validation_video_out_path, "temp")
                    except Exception as e:
                        logger.info(e)
                        conf = 0
                    sync_conf_list.append(conf)
                    plot_loss_chart(
                        os.path.join(output_dir, f"loss_charts/sync_conf_chart-{global_step}.png"),
                        ("Sync confidence", val_step_list, sync_conf_list),
                    )

            logs = {"step_loss": loss.item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)

            if global_step >= config.run.max_train_steps:
                break

    progress_bar.close()
    dist.destroy_process_group()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    # Config file path
    parser.add_argument("--unet_config_path", type=str, default="configs/unet.yaml")

    args = parser.parse_args()
    config = OmegaConf.load(args.unet_config_path)
    config.unet_config_path = args.unet_config_path

    main(config)