LatentSync / latentsync /utils /affine_transform.py
fffiloni's picture
Migrated from GitHub
3650c12 verified
# Adapted from https://github.com/guanjz20/StyleSync/blob/main/utils.py
import numpy as np
import cv2
def transformation_from_points(points1, points0, smooth=True, p_bias=None):
points2 = np.array(points0)
points2 = points2.astype(np.float64)
points1 = points1.astype(np.float64)
c1 = np.mean(points1, axis=0)
c2 = np.mean(points2, axis=0)
points1 -= c1
points2 -= c2
s1 = np.std(points1)
s2 = np.std(points2)
points1 /= s1
points2 /= s2
U, S, Vt = np.linalg.svd(np.matmul(points1.T, points2))
R = (np.matmul(U, Vt)).T
sR = (s2 / s1) * R
T = c2.reshape(2, 1) - (s2 / s1) * np.matmul(R, c1.reshape(2, 1))
M = np.concatenate((sR, T), axis=1)
if smooth:
bias = points2[2] - points1[2]
if p_bias is None:
p_bias = bias
else:
bias = p_bias * 0.2 + bias * 0.8
p_bias = bias
M[:, 2] = M[:, 2] + bias
return M, p_bias
class AlignRestore(object):
def __init__(self, align_points=3):
if align_points == 3:
self.upscale_factor = 1
self.crop_ratio = (2.8, 2.8)
self.face_template = np.array([[19 - 2, 30 - 10], [56 + 2, 30 - 10], [37.5, 45 - 5]])
self.face_template = self.face_template * 2.8
# self.face_size = (int(100 * self.crop_ratio[0]), int(100 * self.crop_ratio[1]))
self.face_size = (int(75 * self.crop_ratio[0]), int(100 * self.crop_ratio[1]))
self.p_bias = None
def process(self, img, lmk_align=None, smooth=True, align_points=3):
aligned_face, affine_matrix = self.align_warp_face(img, lmk_align, smooth)
restored_img = self.restore_img(img, aligned_face, affine_matrix)
cv2.imwrite("restored.jpg", restored_img)
cv2.imwrite("aligned.jpg", aligned_face)
return aligned_face, restored_img
def align_warp_face(self, img, lmks3, smooth=True, border_mode="constant"):
affine_matrix, self.p_bias = transformation_from_points(lmks3, self.face_template, smooth, self.p_bias)
if border_mode == "constant":
border_mode = cv2.BORDER_CONSTANT
elif border_mode == "reflect101":
border_mode = cv2.BORDER_REFLECT101
elif border_mode == "reflect":
border_mode = cv2.BORDER_REFLECT
cropped_face = cv2.warpAffine(
img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=[127, 127, 127]
)
return cropped_face, affine_matrix
def align_warp_face2(self, img, landmark, border_mode="constant"):
affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template)[0]
if border_mode == "constant":
border_mode = cv2.BORDER_CONSTANT
elif border_mode == "reflect101":
border_mode = cv2.BORDER_REFLECT101
elif border_mode == "reflect":
border_mode = cv2.BORDER_REFLECT
cropped_face = cv2.warpAffine(
img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132)
)
return cropped_face, affine_matrix
def restore_img(self, input_img, face, affine_matrix):
h, w, _ = input_img.shape
h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor)
upsample_img = cv2.resize(input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
inverse_affine = cv2.invertAffineTransform(affine_matrix)
inverse_affine *= self.upscale_factor
if self.upscale_factor > 1:
extra_offset = 0.5 * self.upscale_factor
else:
extra_offset = 0
inverse_affine[:, 2] += extra_offset
inv_restored = cv2.warpAffine(face, inverse_affine, (w_up, h_up))
mask = np.ones((self.face_size[1], self.face_size[0]), dtype=np.float32)
inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
inv_mask_erosion = cv2.erode(
inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8)
)
pasted_face = inv_mask_erosion[:, :, None] * inv_restored
total_face_area = np.sum(inv_mask_erosion)
w_edge = int(total_face_area**0.5) // 20
erosion_radius = w_edge * 2
inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
blur_size = w_edge * 2
inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
inv_soft_mask = inv_soft_mask[:, :, None]
upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img
if np.max(upsample_img) > 256:
upsample_img = upsample_img.astype(np.uint16)
else:
upsample_img = upsample_img.astype(np.uint8)
return upsample_img
class laplacianSmooth:
def __init__(self, smoothAlpha=0.3):
self.smoothAlpha = smoothAlpha
self.pts_last = None
def smooth(self, pts_cur):
if self.pts_last is None:
self.pts_last = pts_cur.copy()
return pts_cur.copy()
x1 = min(pts_cur[:, 0])
x2 = max(pts_cur[:, 0])
y1 = min(pts_cur[:, 1])
y2 = max(pts_cur[:, 1])
width = x2 - x1
pts_update = []
for i in range(len(pts_cur)):
x_new, y_new = pts_cur[i]
x_old, y_old = self.pts_last[i]
tmp = (x_new - x_old) ** 2 + (y_new - y_old) ** 2
w = np.exp(-tmp / (width * self.smoothAlpha))
x = x_old * w + x_new * (1 - w)
y = y_old * w + y_new * (1 - w)
pts_update.append([x, y])
pts_update = np.array(pts_update)
self.pts_last = pts_update.copy()
return pts_update