Spaces:
Runtime error
Runtime error
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import mediapipe as mp | |
from latentsync.utils.util import read_video, gather_video_paths_recursively | |
import os | |
import tqdm | |
from multiprocessing import Pool | |
class FaceDetector: | |
def __init__(self): | |
self.face_detection = mp.solutions.face_detection.FaceDetection( | |
model_selection=0, min_detection_confidence=0.5 | |
) | |
def detect_face(self, image): | |
# Process the image and detect faces. | |
results = self.face_detection.process(image) | |
if not results.detections: # Face not detected | |
return False | |
if len(results.detections) != 1: | |
return False | |
return True | |
def detect_video(self, video_path): | |
try: | |
video_frames = read_video(video_path, change_fps=False) | |
except Exception as e: | |
print(f"Exception: {e} - {video_path}") | |
return False | |
if len(video_frames) == 0: | |
return False | |
for frame in video_frames: | |
if not self.detect_face(frame): | |
return False | |
return True | |
def close(self): | |
self.face_detection.close() | |
def remove_incorrect_affined(video_path): | |
if not os.path.isfile(video_path): | |
return | |
face_detector = FaceDetector() | |
has_face = face_detector.detect_video(video_path) | |
if not has_face: | |
os.remove(video_path) | |
print(f"Removed: {video_path}") | |
face_detector.close() | |
def remove_incorrect_affined_multiprocessing(input_dir, num_workers): | |
video_paths = gather_video_paths_recursively(input_dir) | |
print(f"Total videos: {len(video_paths)}") | |
print(f"Removing incorrect affined videos in {input_dir} ...") | |
with Pool(num_workers) as pool: | |
for _ in tqdm.tqdm(pool.imap_unordered(remove_incorrect_affined, video_paths), total=len(video_paths)): | |
pass | |
if __name__ == "__main__": | |
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/multilingual_dcc/high_visual_quality" | |
num_workers = 50 | |
remove_incorrect_affined_multiprocessing(input_dir, num_workers) | |