Spaces:
Runtime error
Runtime error
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import tqdm | |
from eval.syncnet import SyncNetEval | |
from eval.syncnet_detect import SyncNetDetector | |
from eval.eval_sync_conf import syncnet_eval | |
import torch | |
import subprocess | |
import shutil | |
from multiprocessing import Process | |
paths = [] | |
def gather_paths(input_dir, output_dir): | |
# os.makedirs(output_dir, exist_ok=True) | |
for video in tqdm.tqdm(sorted(os.listdir(input_dir))): | |
if video.endswith(".mp4"): | |
video_input = os.path.join(input_dir, video) | |
video_output = os.path.join(output_dir, video) | |
if os.path.isfile(video_output): | |
continue | |
paths.append((video_input, video_output)) | |
elif os.path.isdir(os.path.join(input_dir, video)): | |
gather_paths(os.path.join(input_dir, video), os.path.join(output_dir, video)) | |
def adjust_offset(video_input: str, video_output: str, av_offset: int, fps: int = 25): | |
command = f"ffmpeg -loglevel error -y -i {video_input} -itsoffset {av_offset/fps} -i {video_input} -map 0:v -map 1:a -c copy -q:v 0 -q:a 0 {video_output}" | |
subprocess.run(command, shell=True) | |
def func(sync_conf_threshold, paths, device_id, process_temp_dir): | |
os.makedirs(process_temp_dir, exist_ok=True) | |
device = f"cuda:{device_id}" | |
syncnet = SyncNetEval(device=device) | |
syncnet.loadParameters("checkpoints/auxiliary/syncnet_v2.model") | |
detect_results_dir = os.path.join(process_temp_dir, "detect_results") | |
syncnet_eval_results_dir = os.path.join(process_temp_dir, "syncnet_eval_results") | |
syncnet_detector = SyncNetDetector(device=device, detect_results_dir=detect_results_dir) | |
for video_input, video_output in paths: | |
try: | |
av_offset, conf = syncnet_eval( | |
syncnet, syncnet_detector, video_input, syncnet_eval_results_dir, detect_results_dir | |
) | |
if conf >= sync_conf_threshold and abs(av_offset) <= 6: | |
os.makedirs(os.path.dirname(video_output), exist_ok=True) | |
if av_offset == 0: | |
shutil.copy(video_input, video_output) | |
else: | |
adjust_offset(video_input, video_output, av_offset) | |
except Exception as e: | |
print(e) | |
def split(a, n): | |
k, m = divmod(len(a), n) | |
return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n)) | |
def sync_av_multi_gpus(input_dir, output_dir, temp_dir, num_workers, sync_conf_threshold): | |
gather_paths(input_dir, output_dir) | |
num_devices = torch.cuda.device_count() | |
if num_devices == 0: | |
raise RuntimeError("No GPUs found") | |
split_paths = list(split(paths, num_workers * num_devices)) | |
processes = [] | |
for i in range(num_devices): | |
for j in range(num_workers): | |
process_index = i * num_workers + j | |
process = Process( | |
target=func, | |
args=( | |
sync_conf_threshold, | |
split_paths[process_index], | |
i, | |
os.path.join(temp_dir, f"process_{process_index}"), | |
), | |
) | |
process.start() | |
processes.append(process) | |
for process in processes: | |
process.join() | |
if __name__ == "__main__": | |
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/ads/affine_transformed" | |
output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/temp" | |
temp_dir = "temp" | |
num_workers = 20 # How many processes per device | |
sync_conf_threshold = 3 | |
sync_av_multi_gpus(input_dir, output_dir, temp_dir, num_workers, sync_conf_threshold) | |