# Adapted from https://github.com/Rudrabha/Wav2Lip/blob/master/audio.py import librosa import librosa.filters import numpy as np from scipy import signal from scipy.io import wavfile from omegaconf import OmegaConf import torch audio_config_path = "configs/audio.yaml" config = OmegaConf.load(audio_config_path) def load_wav(path, sr): return librosa.core.load(path, sr=sr)[0] def save_wav(wav, path, sr): wav *= 32767 / max(0.01, np.max(np.abs(wav))) # proposed by @dsmiller wavfile.write(path, sr, wav.astype(np.int16)) def save_wavenet_wav(wav, path, sr): librosa.output.write_wav(path, wav, sr=sr) def preemphasis(wav, k, preemphasize=True): if preemphasize: return signal.lfilter([1, -k], [1], wav) return wav def inv_preemphasis(wav, k, inv_preemphasize=True): if inv_preemphasize: return signal.lfilter([1], [1, -k], wav) return wav def get_hop_size(): hop_size = config.audio.hop_size if hop_size is None: assert config.audio.frame_shift_ms is not None hop_size = int(config.audio.frame_shift_ms / 1000 * config.audio.sample_rate) return hop_size def linearspectrogram(wav): D = _stft(preemphasis(wav, config.audio.preemphasis, config.audio.preemphasize)) S = _amp_to_db(np.abs(D)) - config.audio.ref_level_db if config.audio.signal_normalization: return _normalize(S) return S def melspectrogram(wav): D = _stft(preemphasis(wav, config.audio.preemphasis, config.audio.preemphasize)) S = _amp_to_db(_linear_to_mel(np.abs(D))) - config.audio.ref_level_db if config.audio.signal_normalization: return _normalize(S) return S def _lws_processor(): import lws return lws.lws(config.audio.n_fft, get_hop_size(), fftsize=config.audio.win_size, mode="speech") def _stft(y): if config.audio.use_lws: return _lws_processor(config.audio).stft(y).T else: return librosa.stft(y=y, n_fft=config.audio.n_fft, hop_length=get_hop_size(), win_length=config.audio.win_size) ########################################################## # Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!) def num_frames(length, fsize, fshift): """Compute number of time frames of spectrogram""" pad = fsize - fshift if length % fshift == 0: M = (length + pad * 2 - fsize) // fshift + 1 else: M = (length + pad * 2 - fsize) // fshift + 2 return M def pad_lr(x, fsize, fshift): """Compute left and right padding""" M = num_frames(len(x), fsize, fshift) pad = fsize - fshift T = len(x) + 2 * pad r = (M - 1) * fshift + fsize - T return pad, pad + r ########################################################## # Librosa correct padding def librosa_pad_lr(x, fsize, fshift): return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0] # Conversions _mel_basis = None def _linear_to_mel(spectogram): global _mel_basis if _mel_basis is None: _mel_basis = _build_mel_basis() return np.dot(_mel_basis, spectogram) def _build_mel_basis(): assert config.audio.fmax <= config.audio.sample_rate // 2 return librosa.filters.mel( sr=config.audio.sample_rate, n_fft=config.audio.n_fft, n_mels=config.audio.num_mels, fmin=config.audio.fmin, fmax=config.audio.fmax, ) def _amp_to_db(x): min_level = np.exp(config.audio.min_level_db / 20 * np.log(10)) return 20 * np.log10(np.maximum(min_level, x)) def _db_to_amp(x): return np.power(10.0, (x) * 0.05) def _normalize(S): if config.audio.allow_clipping_in_normalization: if config.audio.symmetric_mels: return np.clip( (2 * config.audio.max_abs_value) * ((S - config.audio.min_level_db) / (-config.audio.min_level_db)) - config.audio.max_abs_value, -config.audio.max_abs_value, config.audio.max_abs_value, ) else: return np.clip( config.audio.max_abs_value * ((S - config.audio.min_level_db) / (-config.audio.min_level_db)), 0, config.audio.max_abs_value, ) assert S.max() <= 0 and S.min() - config.audio.min_level_db >= 0 if config.audio.symmetric_mels: return (2 * config.audio.max_abs_value) * ( (S - config.audio.min_level_db) / (-config.audio.min_level_db) ) - config.audio.max_abs_value else: return config.audio.max_abs_value * ((S - config.audio.min_level_db) / (-config.audio.min_level_db)) def _denormalize(D): if config.audio.allow_clipping_in_normalization: if config.audio.symmetric_mels: return ( (np.clip(D, -config.audio.max_abs_value, config.audio.max_abs_value) + config.audio.max_abs_value) * -config.audio.min_level_db / (2 * config.audio.max_abs_value) ) + config.audio.min_level_db else: return ( np.clip(D, 0, config.audio.max_abs_value) * -config.audio.min_level_db / config.audio.max_abs_value ) + config.audio.min_level_db if config.audio.symmetric_mels: return ( (D + config.audio.max_abs_value) * -config.audio.min_level_db / (2 * config.audio.max_abs_value) ) + config.audio.min_level_db else: return (D * -config.audio.min_level_db / config.audio.max_abs_value) + config.audio.min_level_db def get_melspec_overlap(audio_samples, melspec_length=52): mel_spec_overlap = melspectrogram(audio_samples.numpy()) mel_spec_overlap = torch.from_numpy(mel_spec_overlap) i = 0 mel_spec_overlap_list = [] while i + melspec_length < mel_spec_overlap.shape[1] - 3: mel_spec_overlap_list.append(mel_spec_overlap[:, i : i + melspec_length].unsqueeze(0)) i += 3 mel_spec_overlap = torch.stack(mel_spec_overlap_list) return mel_spec_overlap