# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import imageio import numpy as np import json from typing import Union import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F import torchvision import torch.distributed as dist from torchvision import transforms from tqdm import tqdm from einops import rearrange import cv2 from decord import AudioReader, VideoReader import shutil import subprocess # Machine epsilon for a float32 (single precision) eps = np.finfo(np.float32).eps def read_json(filepath: str): with open(filepath) as f: json_dict = json.load(f) return json_dict def read_video(video_path: str, change_fps=True, use_decord=True): if change_fps: temp_dir = "temp" if os.path.exists(temp_dir): shutil.rmtree(temp_dir) os.makedirs(temp_dir, exist_ok=True) command = ( f"ffmpeg -loglevel error -y -nostdin -i {video_path} -r 25 -crf 18 {os.path.join(temp_dir, 'video.mp4')}" ) subprocess.run(command, shell=True) target_video_path = os.path.join(temp_dir, "video.mp4") else: target_video_path = video_path if use_decord: return read_video_decord(target_video_path) else: return read_video_cv2(target_video_path) def read_video_decord(video_path: str): vr = VideoReader(video_path) video_frames = vr[:].asnumpy() vr.seek(0) return video_frames def read_video_cv2(video_path: str): # Open the video file cap = cv2.VideoCapture(video_path) # Check if the video was opened successfully if not cap.isOpened(): print("Error: Could not open video.") return np.array([]) frames = [] while True: # Read a frame ret, frame = cap.read() # If frame is read correctly ret is True if not ret: break # Convert BGR to RGB frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frames.append(frame_rgb) # Release the video capture object cap.release() return np.array(frames) def read_audio(audio_path: str, audio_sample_rate: int = 16000): if audio_path is None: raise ValueError("Audio path is required.") ar = AudioReader(audio_path, sample_rate=audio_sample_rate, mono=True) # To access the audio samples audio_samples = torch.from_numpy(ar[:].asnumpy()) audio_samples = audio_samples.squeeze(0) return audio_samples def write_video(video_output_path: str, video_frames: np.ndarray, fps: int): height, width = video_frames[0].shape[:2] out = cv2.VideoWriter(video_output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)) # out = cv2.VideoWriter(video_output_path, cv2.VideoWriter_fourcc(*"vp09"), fps, (width, height)) for frame in video_frames: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) out.write(frame) out.release() def init_dist(backend="nccl", **kwargs): """Initializes distributed environment.""" rank = int(os.environ["RANK"]) num_gpus = torch.cuda.device_count() if num_gpus == 0: raise RuntimeError("No GPUs available for training.") local_rank = rank % num_gpus torch.cuda.set_device(local_rank) dist.init_process_group(backend=backend, **kwargs) return local_rank def zero_rank_print(s): if dist.is_initialized() and dist.get_rank() == 0: print("### " + s) def zero_rank_log(logger, message: str): if dist.is_initialized() and dist.get_rank() == 0: logger.info(message) def make_audio_window(audio_embeddings: torch.Tensor, window_size: int): audio_window = [] end_idx = audio_embeddings.shape[1] - window_size + 1 for i in range(end_idx): audio_window.append(audio_embeddings[:, i : i + window_size, :]) audio_window = torch.stack(audio_window) audio_window = rearrange(audio_window, "f b w d -> b f w d") return audio_window def check_video_fps(video_path: str): cam = cv2.VideoCapture(video_path) fps = cam.get(cv2.CAP_PROP_FPS) if fps != 25: raise ValueError(f"Video FPS is not 25, it is {fps}. Please convert the video to 25 FPS.") def tailor_tensor_to_length(tensor: torch.Tensor, length: int): if len(tensor) == length: return tensor elif len(tensor) > length: return tensor[:length] else: return torch.cat([tensor, tensor[-1].repeat(length - len(tensor))]) def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8): videos = rearrange(videos, "b c f h w -> f b c h w") outputs = [] for x in videos: x = torchvision.utils.make_grid(x, nrow=n_rows) x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) if rescale: x = (x + 1.0) / 2.0 # -1,1 -> 0,1 x = (x * 255).numpy().astype(np.uint8) outputs.append(x) os.makedirs(os.path.dirname(path), exist_ok=True) imageio.mimsave(path, outputs, fps=fps) def interpolate_features(features: torch.Tensor, output_len: int) -> torch.Tensor: features = features.cpu().numpy() input_len, num_features = features.shape input_timesteps = np.linspace(0, 10, input_len) output_timesteps = np.linspace(0, 10, output_len) output_features = np.zeros((output_len, num_features)) for feat in range(num_features): output_features[:, feat] = np.interp(output_timesteps, input_timesteps, features[:, feat]) return torch.from_numpy(output_features) # DDIM Inversion @torch.no_grad() def init_prompt(prompt, pipeline): uncond_input = pipeline.tokenizer( [""], padding="max_length", max_length=pipeline.tokenizer.model_max_length, return_tensors="pt" ) uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0] text_input = pipeline.tokenizer( [prompt], padding="max_length", max_length=pipeline.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0] context = torch.cat([uncond_embeddings, text_embeddings]) return context def reversed_forward(ddim_scheduler, pred_noise, timesteps, x_t): # Compute alphas, betas alpha_prod_t = ddim_scheduler.alphas_cumprod[timesteps] beta_prod_t = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if ddim_scheduler.config.prediction_type == "epsilon": beta_prod_t = beta_prod_t[:, None, None, None, None] alpha_prod_t = alpha_prod_t[:, None, None, None, None] pred_original_sample = (x_t - beta_prod_t ** (0.5) * pred_noise) / alpha_prod_t ** (0.5) else: raise NotImplementedError("This prediction type is not implemented yet") # Clip "predicted x_0" if ddim_scheduler.config.clip_sample: pred_original_sample = torch.clamp(pred_original_sample, -1, 1) return pred_original_sample def next_step( model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler, ): timestep, next_timestep = ( min(timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep, ) alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep] beta_prod_t = 1 - alpha_prod_t next_original_sample = (sample - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5 next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output next_sample = alpha_prod_t_next**0.5 * next_original_sample + next_sample_direction return next_sample def get_noise_pred_single(latents, t, context, unet): noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"] return noise_pred @torch.no_grad() def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt): context = init_prompt(prompt, pipeline) uncond_embeddings, cond_embeddings = context.chunk(2) all_latent = [latent] latent = latent.clone().detach() for i in tqdm(range(num_inv_steps)): t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1] noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet) latent = next_step(noise_pred, t, latent, ddim_scheduler) all_latent.append(latent) return all_latent @torch.no_grad() def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""): ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt) return ddim_latents def plot_loss_chart(save_path: str, *args): # Creating the plot plt.figure() for loss_line in args: plt.plot(loss_line[1], loss_line[2], label=loss_line[0]) plt.xlabel("Step") plt.ylabel("Loss") plt.legend() # Save the figure to a file plt.savefig(save_path) # Close the figure to free memory plt.close() CRED = "\033[91m" CEND = "\033[0m" def red_text(text: str): return f"{CRED}{text}{CEND}" log_loss = nn.BCELoss(reduction="none") def cosine_loss(vision_embeds, audio_embeds, y): sims = nn.functional.cosine_similarity(vision_embeds, audio_embeds) # sims[sims!=sims] = 0 # remove nan # sims = sims.clamp(0, 1) loss = log_loss(sims.unsqueeze(1), y).squeeze() return loss def save_image(image, save_path): # input size (C, H, W) image = (image / 2 + 0.5).clamp(0, 1) image = (image * 255).to(torch.uint8) image = transforms.ToPILImage()(image) # Save the image copy image.save(save_path) # Close the image file image.close() def gather_loss(loss, device): # Sum the local loss across all processes local_loss = loss.item() global_loss = torch.tensor(local_loss, dtype=torch.float32).to(device) dist.all_reduce(global_loss, op=dist.ReduceOp.SUM) # Calculate the average loss across all processes global_average_loss = global_loss.item() / dist.get_world_size() return global_average_loss def gather_video_paths_recursively(input_dir): print(f"Recursively gathering video paths of {input_dir} ...") paths = [] gather_video_paths(input_dir, paths) return paths def gather_video_paths(input_dir, paths): for file in sorted(os.listdir(input_dir)): if file.endswith(".mp4"): filepath = os.path.join(input_dir, file) paths.append(filepath) elif os.path.isdir(os.path.join(input_dir, file)): gather_video_paths(os.path.join(input_dir, file), paths) def count_video_time(video_path): video = cv2.VideoCapture(video_path) frame_count = video.get(cv2.CAP_PROP_FRAME_COUNT) fps = video.get(cv2.CAP_PROP_FPS) return frame_count / fps