File size: 3,822 Bytes
484fad2
 
 
 
 
 
 
 
 
 
 
 
 
 
ec58781
484fad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import gradio as gr
import numpy as np

import spaces
import torch
import spaces
import random

from diffusers import FluxControlPipeline, FluxTransformer2DModel
from controlnet_aux import CannyDetector

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-Canny-dev", torch_dtype=torch.bfloat16).to("cuda")
processor = CannyDetector()

@spaces.GPU
def infer(control_image, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    control_image = processor(control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024)
    image = pipe(
        prompt=prompt,
        control_image=control_image,
        height=height,
        width=width,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=torch.Generator().manual_seed(seed),
    ).images[0]
    return image, seed

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 Canny [dev]
12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)  
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
        """)

        control_image = gr.Image(label="Upload the image for control", type="pil")
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [control_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result, seed]
    )

demo.launch()