|
import streamlit as st
|
|
import pandas as pd
|
|
import joblib
|
|
import matplotlib.pyplot as plt
|
|
import plotly.express as px
|
|
|
|
st.title("Customer Segmentation Using RFM")
|
|
|
|
kmeans = joblib.load("customer_segmentation_model.pkl")
|
|
rfm = pd.read_csv("Customer_Segmentation.csv")
|
|
|
|
def predict_rfm(num1,num2,num3):
|
|
data = pd.DataFrame(data=[[num1,num2,num3]],columns=["Recency_Score","Frequency_Score","Monetary_Score"])
|
|
pred = kmeans.predict(data)
|
|
label = ['Loyal Customer','Champion','At Risk','New Customer']
|
|
return label[pred[0]]
|
|
|
|
|
|
|
|
col1,col2,col3 = st.columns(3)
|
|
num1 = col1.number_input("Recency_Score (1-5):", min_value=1, max_value=5, step=1, value=1)
|
|
num2 = col2.number_input("Frequency_Score (1-5):", min_value=1, max_value=5, step=1, value=1)
|
|
num3 = col3.number_input("Monetary_Score (1-5):", min_value=1, max_value=5, step=1, value=1)
|
|
|
|
value = ""
|
|
if st.button(label="Predict"):
|
|
value = predict_rfm(num1,num2,num3)
|
|
|
|
st.markdown(f"<span style='font-size:20px; font-weight:bold; font-style:italic'>{value}</span>",unsafe_allow_html=True)
|
|
|
|
|
|
custom_colors = {
|
|
'Loyal Customers': '#99ff99',
|
|
'Champions': '#66b3ff',
|
|
'At Risk Customers': '#ff9999',
|
|
'New Customers': '#ffcc99'
|
|
}
|
|
|
|
figpx = px.scatter_3d(
|
|
rfm,
|
|
x='log_Recency',
|
|
y='log_Frequency',
|
|
z='log_Monetary',
|
|
color='Cluster Labels',
|
|
color_discrete_map=custom_colors,
|
|
labels={'log_Recency': 'Recency', 'log_Frequency': 'Frequency', 'log_Monetary': 'Monetary'},
|
|
title='Customer Segmentation Visualization'
|
|
)
|
|
st.plotly_chart(figpx)
|
|
|
|
|
|
|
|
customers = rfm.shape[0]
|
|
labels = ['Loyal Customers','Champions','At Risk Customers','New Customers']
|
|
sizes = (rfm["Clusters"].value_counts()/customers)*100
|
|
colors = ['#99ff99', '#66b3ff', '#ff9999', '#ffcc99']
|
|
|
|
fig,ax = plt.subplots(figsize=(8,6))
|
|
|
|
ax.pie(
|
|
sizes, labels=labels, colors=colors, autopct='%1.1f%%',
|
|
startangle=120, wedgeprops={'edgecolor': 'black'}
|
|
)
|
|
|
|
ax.set_title('Customer Segmentation', fontsize=14)
|
|
ax.legend([0,1,2,3],title='Clusters',loc='best',)
|
|
st.pyplot(fig) |