import streamlit as st import pandas as pd import joblib import matplotlib.pyplot as plt import plotly.express as px st.title("Customer Segmentation Using RFM") kmeans = joblib.load("customer_segmentation_model.pkl") rfm = pd.read_csv("Customer_Segmentation.csv") def predict_rfm(num1,num2,num3): data = pd.DataFrame(data=[[num1,num2,num3]],columns=["Recency_Score","Frequency_Score","Monetary_Score"]) pred = kmeans.predict(data) label = ['Loyal Customer','Champion','At Risk','New Customer'] return label[pred[0]] col1,col2,col3 = st.columns(3) num1 = col1.number_input("Recency_Score (1-5):", min_value=1, max_value=5, step=1, value=1) num2 = col2.number_input("Frequency_Score (1-5):", min_value=1, max_value=5, step=1, value=1) num3 = col3.number_input("Monetary_Score (1-5):", min_value=1, max_value=5, step=1, value=1) value = "" if st.button(label="Predict"): value = predict_rfm(num1,num2,num3) st.markdown(f"{value}",unsafe_allow_html=True) custom_colors = { 'Loyal Customers': '#99ff99', 'Champions': '#66b3ff', 'At Risk Customers': '#ff9999', 'New Customers': '#ffcc99' } figpx = px.scatter_3d( rfm, x='log_Recency', y='log_Frequency', z='log_Monetary', color='Cluster Labels', color_discrete_map=custom_colors, labels={'log_Recency': 'Recency', 'log_Frequency': 'Frequency', 'log_Monetary': 'Monetary'}, title='Customer Segmentation Visualization' ) st.plotly_chart(figpx) customers = rfm.shape[0] labels = ['Loyal Customers','Champions','At Risk Customers','New Customers'] sizes = (rfm["Clusters"].value_counts()/customers)*100 colors = ['#99ff99', '#66b3ff', '#ff9999', '#ffcc99'] fig,ax = plt.subplots(figsize=(8,6)) ax.pie( sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=120, wedgeprops={'edgecolor': 'black'} ) ax.set_title('Customer Segmentation', fontsize=14) ax.legend([0,1,2,3],title='Clusters',loc='best',) st.pyplot(fig)