Spaces:
Running
on
Zero
Running
on
Zero
Push
Browse files- .python-version +1 -0
- README.md +25 -5
- app.py +181 -131
- pyproject.toml +20 -0
- requirements.txt +4 -1
- uv.lock +0 -0
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.12
|
README.md
CHANGED
@@ -1,13 +1,33 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: green
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
|
|
7 |
sdk_version: 5.6.0
|
|
|
8 |
app_file: app.py
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: AnyFurnish
|
3 |
+
emoji: 🛋️
|
4 |
colorFrom: green
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
python_version: 3.12
|
8 |
sdk_version: 5.6.0
|
9 |
+
suggested_hardware: a100-large
|
10 |
app_file: app.py
|
11 |
+
fullWidth: true
|
12 |
+
header: mini
|
13 |
+
# models: blanchon/anyfurnish
|
14 |
+
# datasets: blanchon/anyfurnish-dataset
|
15 |
+
tags:
|
16 |
+
- image-generation
|
17 |
+
- image-to-image
|
18 |
+
- furniture
|
19 |
+
- virtual-staging
|
20 |
+
- home-decor
|
21 |
+
- home-design
|
22 |
+
pinned: true
|
23 |
+
preload_from_hub:
|
24 |
+
- xiaozaa/flux1-fill-dev-diffusers
|
25 |
+
- blanchon/FluxFillFurniture
|
26 |
+
- black-forest-labs/FLUX.1-Fill-dev
|
27 |
license: mit
|
28 |
---
|
29 |
|
30 |
+
# AnyFurnish
|
31 |
+
|
32 |
+
AnyFurnish is a tool that allows you to generate furniture images using Flux.1 Fill Dev.
|
33 |
+
|
app.py
CHANGED
@@ -1,111 +1,164 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
|
4 |
import spaces
|
5 |
import torch
|
6 |
-
import
|
7 |
-
import
|
|
|
8 |
|
9 |
-
|
10 |
-
from PIL import Image
|
11 |
|
12 |
-
device = "cuda"
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
)
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
"
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
# Extract the original dimensions
|
48 |
-
original_width, original_height = image.size
|
49 |
-
|
50 |
-
# Set constants for enforcing a roughly 2:1 aspect ratio
|
51 |
-
MIN_ASPECT_RATIO = 1.8
|
52 |
-
MAX_ASPECT_RATIO = 2.2
|
53 |
-
FIXED_DIMENSION = 1024
|
54 |
-
|
55 |
-
# Calculate the aspect ratio of the original image
|
56 |
-
original_aspect_ratio = original_width / original_height
|
57 |
-
|
58 |
-
# Determine which dimension to fix
|
59 |
-
if original_aspect_ratio > 1: # Wider than tall
|
60 |
-
width = FIXED_DIMENSION
|
61 |
-
height = round(FIXED_DIMENSION / original_aspect_ratio)
|
62 |
-
else: # Taller than wide
|
63 |
-
height = FIXED_DIMENSION
|
64 |
-
width = round(FIXED_DIMENSION * original_aspect_ratio)
|
65 |
|
|
|
|
|
66 |
# Ensure dimensions are multiples of 8
|
67 |
width = (width // 8) * 8
|
68 |
height = (height // 8) * 8
|
69 |
|
70 |
-
|
71 |
-
calculated_aspect_ratio = width / height
|
72 |
-
if calculated_aspect_ratio > MAX_ASPECT_RATIO:
|
73 |
-
width = (height * MAX_ASPECT_RATIO // 8) * 8
|
74 |
-
elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
|
75 |
-
height = (width / MIN_ASPECT_RATIO // 8) * 8
|
76 |
|
77 |
-
# Ensure width and height remain above the minimum dimensions
|
78 |
-
width = max(width, 576) if width == FIXED_DIMENSION else width
|
79 |
-
height = max(height, 576) if height == FIXED_DIMENSION else height
|
80 |
-
|
81 |
-
return width, height
|
82 |
|
83 |
@spaces.GPU
|
84 |
-
def infer(
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
width, height = calculate_optimal_dimensions(image)
|
87 |
-
mask
|
|
|
|
|
|
|
88 |
if randomize_seed:
|
89 |
-
seed =
|
90 |
-
|
91 |
-
|
|
|
92 |
image=image,
|
93 |
mask_image=mask,
|
94 |
height=height,
|
95 |
width=width,
|
96 |
guidance_scale=guidance_scale,
|
97 |
num_inference_steps=num_inference_steps,
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
#col-container {
|
110 |
margin: 0 auto;
|
111 |
max-width: 1000px;
|
@@ -113,23 +166,27 @@ css="""
|
|
113 |
"""
|
114 |
|
115 |
with gr.Blocks(css=css) as demo:
|
116 |
-
|
117 |
with gr.Column(elem_id="col-container"):
|
118 |
-
gr.Markdown(
|
119 |
-
12B param rectified flow transformer structural conditioning tuned, guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
120 |
-
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
121 |
-
""")
|
122 |
with gr.Row():
|
123 |
with gr.Column():
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
prompt = gr.Text(
|
134 |
label="Prompt",
|
135 |
show_label=False,
|
@@ -138,11 +195,17 @@ with gr.Blocks(css=css) as demo:
|
|
138 |
container=False,
|
139 |
)
|
140 |
run_button = gr.Button("Run")
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
with gr.Accordion("Advanced Settings", open=False):
|
145 |
-
|
146 |
seed = gr.Slider(
|
147 |
label="Seed",
|
148 |
minimum=0,
|
@@ -150,31 +213,10 @@ with gr.Blocks(css=css) as demo:
|
|
150 |
step=1,
|
151 |
value=0,
|
152 |
)
|
153 |
-
|
154 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
155 |
-
|
156 |
-
with gr.Row():
|
157 |
-
|
158 |
-
width = gr.Slider(
|
159 |
-
label="Width",
|
160 |
-
minimum=256,
|
161 |
-
maximum=MAX_IMAGE_SIZE,
|
162 |
-
step=32,
|
163 |
-
value=1024,
|
164 |
-
visible=False
|
165 |
-
)
|
166 |
-
|
167 |
-
height = gr.Slider(
|
168 |
-
label="Height",
|
169 |
-
minimum=256,
|
170 |
-
maximum=MAX_IMAGE_SIZE,
|
171 |
-
step=32,
|
172 |
-
value=1024,
|
173 |
-
visible=False
|
174 |
-
)
|
175 |
-
|
176 |
-
with gr.Row():
|
177 |
|
|
|
178 |
guidance_scale = gr.Slider(
|
179 |
label="Guidance Scale",
|
180 |
minimum=1,
|
@@ -182,7 +224,7 @@ with gr.Blocks(css=css) as demo:
|
|
182 |
step=0.5,
|
183 |
value=50,
|
184 |
)
|
185 |
-
|
186 |
num_inference_steps = gr.Slider(
|
187 |
label="Number of inference steps",
|
188 |
minimum=1,
|
@@ -193,9 +235,17 @@ with gr.Blocks(css=css) as demo:
|
|
193 |
|
194 |
gr.on(
|
195 |
triggers=[run_button.click, prompt.submit],
|
196 |
-
fn
|
197 |
-
inputs
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
)
|
200 |
|
201 |
-
demo.launch()
|
|
|
1 |
+
import secrets
|
2 |
+
from typing import cast
|
3 |
+
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
|
|
6 |
import spaces
|
7 |
import torch
|
8 |
+
from diffusers import FluxFillPipeline
|
9 |
+
from gradio.components.image_editor import EditorValue
|
10 |
+
from PIL import Image, ImageOps
|
11 |
|
12 |
+
DEVICE = "cuda"
|
|
|
13 |
|
|
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
+
FIXED_DIMENSION = 900
|
16 |
+
|
17 |
+
SYSTEM_PROMPT = r"""This two-panel split-frame image showcases a furniture in as a product shot versus styled in a room.
|
18 |
+
[LEFT] standalone product shot image the furniture on a white background.
|
19 |
+
[RIGHT] integrated example within a room scene."""
|
20 |
+
|
21 |
+
if not torch.cuda.is_available():
|
22 |
+
|
23 |
+
def _dummy_pipe(image: Image.Image, *args, **kwargs): # noqa: ARG001
|
24 |
+
return {"images": [image]}
|
25 |
+
|
26 |
+
pipe = _dummy_pipe
|
27 |
+
else:
|
28 |
+
state_dict, network_alphas = FluxFillPipeline.lora_state_dict(
|
29 |
+
pretrained_model_name_or_path_or_dict="blanchon/FluxFillFurniture",
|
30 |
+
weight_name="pytorch_lora_weights3.safetensors",
|
31 |
+
return_alphas=True,
|
32 |
+
)
|
33 |
+
|
34 |
+
if not all(("lora" in key or "dora_scale" in key) for key in state_dict):
|
35 |
+
msg = "Invalid LoRA checkpoint."
|
36 |
+
raise ValueError(msg)
|
37 |
+
|
38 |
+
pipe = FluxFillPipeline.from_pretrained(
|
39 |
+
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
|
40 |
+
).to(DEVICE)
|
41 |
+
FluxFillPipeline.load_lora_into_transformer(
|
42 |
+
state_dict=state_dict,
|
43 |
+
network_alphas=network_alphas,
|
44 |
+
transformer=pipe.transformer,
|
45 |
+
)
|
46 |
+
pipe.to(DEVICE)
|
47 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
def calculate_optimal_dimensions(image: Image.Image) -> tuple[int, int]:
|
50 |
+
width, height = image.size
|
51 |
# Ensure dimensions are multiples of 8
|
52 |
width = (width // 8) * 8
|
53 |
height = (height // 8) * 8
|
54 |
|
55 |
+
return int(width), int(height)
|
|
|
|
|
|
|
|
|
|
|
56 |
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
@spaces.GPU
|
59 |
+
def infer(
|
60 |
+
furniture_image: Image.Image,
|
61 |
+
room_image: EditorValue,
|
62 |
+
prompt,
|
63 |
+
seed=42,
|
64 |
+
randomize_seed=False,
|
65 |
+
guidance_scale=3.5,
|
66 |
+
num_inference_steps=28,
|
67 |
+
progress=gr.Progress(track_tqdm=True), # noqa: ARG001, B008
|
68 |
+
):
|
69 |
+
_room_image = room_image["background"]
|
70 |
+
if _room_image is None:
|
71 |
+
msg = "Room image is required"
|
72 |
+
raise ValueError(msg)
|
73 |
+
_room_image = cast(Image.Image, _room_image)
|
74 |
+
_room_image = ImageOps.fit(
|
75 |
+
_room_image,
|
76 |
+
(FIXED_DIMENSION, FIXED_DIMENSION),
|
77 |
+
method=Image.Resampling.LANCZOS,
|
78 |
+
centering=(0.5, 0.5),
|
79 |
+
)
|
80 |
+
|
81 |
+
_room_mask = room_image["layers"][0]
|
82 |
+
if _room_mask is None:
|
83 |
+
msg = "Room mask is required"
|
84 |
+
raise ValueError(msg)
|
85 |
+
_room_mask = cast(Image.Image, _room_mask)
|
86 |
+
_room_mask = ImageOps.fit(
|
87 |
+
_room_mask,
|
88 |
+
(FIXED_DIMENSION, FIXED_DIMENSION),
|
89 |
+
method=Image.Resampling.LANCZOS,
|
90 |
+
centering=(0.5, 0.5),
|
91 |
+
)
|
92 |
+
|
93 |
+
furniture_image = ImageOps.fit(
|
94 |
+
furniture_image,
|
95 |
+
(FIXED_DIMENSION, FIXED_DIMENSION),
|
96 |
+
method=Image.Resampling.LANCZOS,
|
97 |
+
centering=(0.5, 0.5),
|
98 |
+
)
|
99 |
+
_furniture_image = Image.new(
|
100 |
+
"RGB",
|
101 |
+
(FIXED_DIMENSION, FIXED_DIMENSION),
|
102 |
+
(255, 255, 255),
|
103 |
+
)
|
104 |
+
_furniture_image.paste(furniture_image, (0, 0))
|
105 |
+
|
106 |
+
_furniture_mask = Image.new(
|
107 |
+
"RGB", (FIXED_DIMENSION, FIXED_DIMENSION), (255, 255, 255)
|
108 |
+
)
|
109 |
+
|
110 |
+
image = Image.new(
|
111 |
+
"RGB",
|
112 |
+
(FIXED_DIMENSION * 2, FIXED_DIMENSION),
|
113 |
+
(255, 255, 255),
|
114 |
+
)
|
115 |
+
# Paste on the center of the image
|
116 |
+
image.paste(_furniture_image, (0, 0))
|
117 |
+
image.paste(_room_image, (FIXED_DIMENSION, 0))
|
118 |
+
|
119 |
+
mask = Image.new(
|
120 |
+
"RGB",
|
121 |
+
(FIXED_DIMENSION * 2, FIXED_DIMENSION),
|
122 |
+
(255, 255, 255),
|
123 |
+
)
|
124 |
+
mask.paste(_furniture_mask, (0, 0))
|
125 |
+
mask.paste(_room_mask, (FIXED_DIMENSION, 0))
|
126 |
+
|
127 |
width, height = calculate_optimal_dimensions(image)
|
128 |
+
# Resize the image and mask to the optimal dimensions for the VAe
|
129 |
+
image = image.resize((width, height))
|
130 |
+
mask = mask.resize((width, height))
|
131 |
+
|
132 |
if randomize_seed:
|
133 |
+
seed = secrets.randbelow(MAX_SEED)
|
134 |
+
|
135 |
+
results_images = pipe(
|
136 |
+
prompt=prompt + ".\n" + SYSTEM_PROMPT,
|
137 |
image=image,
|
138 |
mask_image=mask,
|
139 |
height=height,
|
140 |
width=width,
|
141 |
guidance_scale=guidance_scale,
|
142 |
num_inference_steps=num_inference_steps,
|
143 |
+
batch_size=4,
|
144 |
+
generator=torch.Generator("cpu").manual_seed(seed),
|
145 |
+
)["images"]
|
146 |
+
|
147 |
+
cropped_images = [
|
148 |
+
image.crop((FIXED_DIMENSION, 0, FIXED_DIMENSION * 2, FIXED_DIMENSION))
|
149 |
+
for image in results_images
|
150 |
+
]
|
151 |
+
|
152 |
+
return cropped_images, seed
|
153 |
+
|
154 |
+
|
155 |
+
intro_markdown = """
|
156 |
+
# AnyFurnish
|
157 |
+
|
158 |
+
AnyFurnish is a tool that allows you to generate furniture images using Flux.1 Fill Dev.
|
159 |
+
"""
|
160 |
+
|
161 |
+
css = """
|
162 |
#col-container {
|
163 |
margin: 0 auto;
|
164 |
max-width: 1000px;
|
|
|
166 |
"""
|
167 |
|
168 |
with gr.Blocks(css=css) as demo:
|
|
|
169 |
with gr.Column(elem_id="col-container"):
|
170 |
+
gr.Markdown(intro_markdown)
|
|
|
|
|
|
|
171 |
with gr.Row():
|
172 |
with gr.Column():
|
173 |
+
with gr.Column():
|
174 |
+
furniture_image = gr.Image(
|
175 |
+
label="Furniture Image",
|
176 |
+
type="pil",
|
177 |
+
sources=["upload"],
|
178 |
+
image_mode="RGB",
|
179 |
+
height=300,
|
180 |
+
)
|
181 |
+
room_image = gr.ImageEditor(
|
182 |
+
label="Room Image - Draw mask for inpainting",
|
183 |
+
type="pil",
|
184 |
+
sources=["upload"],
|
185 |
+
image_mode="RGB",
|
186 |
+
layers=False,
|
187 |
+
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
|
188 |
+
height=300,
|
189 |
+
)
|
190 |
prompt = gr.Text(
|
191 |
label="Prompt",
|
192 |
show_label=False,
|
|
|
195 |
container=False,
|
196 |
)
|
197 |
run_button = gr.Button("Run")
|
198 |
+
|
199 |
+
results = gr.Gallery(
|
200 |
+
label="Results",
|
201 |
+
format="png",
|
202 |
+
show_label=False,
|
203 |
+
columns=2,
|
204 |
+
height=600,
|
205 |
+
preview=True,
|
206 |
+
)
|
207 |
+
|
208 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
209 |
seed = gr.Slider(
|
210 |
label="Seed",
|
211 |
minimum=0,
|
|
|
213 |
step=1,
|
214 |
value=0,
|
215 |
)
|
216 |
+
|
217 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
+
with gr.Row():
|
220 |
guidance_scale = gr.Slider(
|
221 |
label="Guidance Scale",
|
222 |
minimum=1,
|
|
|
224 |
step=0.5,
|
225 |
value=50,
|
226 |
)
|
227 |
+
|
228 |
num_inference_steps = gr.Slider(
|
229 |
label="Number of inference steps",
|
230 |
minimum=1,
|
|
|
235 |
|
236 |
gr.on(
|
237 |
triggers=[run_button.click, prompt.submit],
|
238 |
+
fn=infer,
|
239 |
+
inputs=[
|
240 |
+
furniture_image,
|
241 |
+
room_image,
|
242 |
+
prompt,
|
243 |
+
seed,
|
244 |
+
randomize_seed,
|
245 |
+
guidance_scale,
|
246 |
+
num_inference_steps,
|
247 |
+
],
|
248 |
+
outputs=[results, seed],
|
249 |
)
|
250 |
|
251 |
+
demo.launch()
|
pyproject.toml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "flux-1-fill-dev"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Add your description here"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.12"
|
7 |
+
dependencies = [
|
8 |
+
"accelerate>=1.2.1",
|
9 |
+
"diffusers",
|
10 |
+
"gradio>=5.12.0",
|
11 |
+
"peft>=0.14.0",
|
12 |
+
"pillow>=11.1.0",
|
13 |
+
"safetensors>=0.5.2",
|
14 |
+
"sentencepiece>=0.2.0",
|
15 |
+
"spaces>=0.32.0",
|
16 |
+
"transformers>=4.48.0",
|
17 |
+
]
|
18 |
+
|
19 |
+
[tool.uv.sources]
|
20 |
+
diffusers = { git = "https://github.com/huggingface/diffusers.git" }
|
requirements.txt
CHANGED
@@ -3,4 +3,7 @@ transformers
|
|
3 |
accelerate
|
4 |
safetensors
|
5 |
sentencepiece
|
6 |
-
peft
|
|
|
|
|
|
|
|
3 |
accelerate
|
4 |
safetensors
|
5 |
sentencepiece
|
6 |
+
peft
|
7 |
+
gradio
|
8 |
+
spaces
|
9 |
+
pillow
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|