Spaces:
Running
on
Zero
Running
on
Zero
Add examples
Browse files- app.py +220 -87
- examples/1/furniture_image.png +0 -0
- examples/1/room_image.png +0 -0
- examples/1/room_mask.png +0 -0
- examples/2/furniture_image.png +0 -0
- examples/2/room_image.png +0 -0
- examples/2/room_mask.png +0 -0
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import secrets
|
|
|
2 |
from typing import cast
|
3 |
|
4 |
import gradio as gr
|
@@ -11,10 +12,9 @@ from PIL import Image, ImageFilter, ImageOps
|
|
11 |
|
12 |
DEVICE = "cuda"
|
13 |
|
|
|
|
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
-
FIXED_DIMENSION = 900
|
16 |
-
FIXED_DIMENSION = 720
|
17 |
-
FIXED_DIMENSION = (FIXED_DIMENSION // 16) * 16
|
18 |
|
19 |
SYSTEM_PROMPT = r"""This two-panel split-frame image showcases a furniture in as a product shot versus styled in a room.
|
20 |
[LEFT] standalone product shot image the furniture on a white background.
|
@@ -30,6 +30,7 @@ else:
|
|
30 |
state_dict, network_alphas = FluxFillPipeline.lora_state_dict(
|
31 |
pretrained_model_name_or_path_or_dict="blanchon/FluxFillFurniture",
|
32 |
weight_name="pytorch_lora_weights3.safetensors",
|
|
|
33 |
return_alphas=True,
|
34 |
)
|
35 |
|
@@ -43,11 +44,42 @@ else:
|
|
43 |
FluxFillPipeline.load_lora_into_transformer(
|
44 |
state_dict=state_dict,
|
45 |
network_alphas=network_alphas,
|
|
|
46 |
transformer=pipe.transformer,
|
47 |
)
|
48 |
pipe.to(DEVICE)
|
49 |
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
@spaces.GPU(duration=150)
|
52 |
def infer(
|
53 |
furniture_image: Image.Image,
|
@@ -57,16 +89,20 @@ def infer(
|
|
57 |
randomize_seed: bool = False,
|
58 |
guidance_scale: float = 3.5,
|
59 |
num_inference_steps: int = 20,
|
|
|
60 |
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008
|
61 |
):
|
|
|
|
|
|
|
62 |
_room_image = room_image["background"]
|
63 |
if _room_image is None:
|
64 |
msg = "Room image is required"
|
65 |
raise ValueError(msg)
|
66 |
-
_room_image = cast(Image.Image, _room_image)
|
67 |
_room_image = ImageOps.fit(
|
68 |
_room_image,
|
69 |
-
(
|
70 |
method=Image.Resampling.LANCZOS,
|
71 |
centering=(0.5, 0.5),
|
72 |
)
|
@@ -75,47 +111,54 @@ def infer(
|
|
75 |
if _room_mask is None:
|
76 |
msg = "Room mask is required"
|
77 |
raise ValueError(msg)
|
78 |
-
_room_mask = cast(Image.Image, _room_mask)
|
79 |
_room_mask = ImageOps.fit(
|
80 |
_room_mask,
|
81 |
-
(
|
82 |
method=Image.Resampling.LANCZOS,
|
83 |
centering=(0.5, 0.5),
|
84 |
)
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
furniture_image = ImageOps.fit(
|
87 |
furniture_image,
|
88 |
-
(
|
89 |
method=Image.Resampling.LANCZOS,
|
90 |
centering=(0.5, 0.5),
|
91 |
)
|
92 |
_furniture_image = Image.new(
|
93 |
"RGB",
|
94 |
-
(
|
95 |
(255, 255, 255),
|
96 |
)
|
97 |
_furniture_image.paste(furniture_image, (0, 0))
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
)
|
102 |
|
103 |
image = Image.new(
|
104 |
"RGB",
|
105 |
-
(
|
106 |
(255, 255, 255),
|
107 |
)
|
108 |
# Paste on the center of the image
|
109 |
image.paste(_furniture_image, (0, 0))
|
110 |
-
image.paste(_room_image, (
|
111 |
|
112 |
mask = Image.new(
|
113 |
"RGB",
|
114 |
-
(
|
115 |
(255, 255, 255),
|
116 |
)
|
117 |
mask.paste(_furniture_mask, (0, 0))
|
118 |
-
mask.paste(_room_mask, (
|
119 |
# Invert the mask
|
120 |
mask = ImageOps.invert(mask)
|
121 |
# Blur the mask
|
@@ -131,8 +174,8 @@ def infer(
|
|
131 |
prompt=prompt,
|
132 |
image=image,
|
133 |
mask_image=mask,
|
134 |
-
height=
|
135 |
-
width=
|
136 |
num_inference_steps=num_inference_steps,
|
137 |
guidance_scale=guidance_scale,
|
138 |
num_images_per_prompt=2,
|
@@ -140,106 +183,196 @@ def infer(
|
|
140 |
)["images"]
|
141 |
|
142 |
cropped_images = [
|
143 |
-
image.crop((
|
144 |
for image in results_images
|
145 |
]
|
146 |
|
147 |
return cropped_images, seed
|
148 |
|
149 |
|
150 |
-
intro_markdown = """
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
"""
|
155 |
|
156 |
-
css = """
|
157 |
-
#col-
|
158 |
margin: 0 auto;
|
159 |
-
max-width:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
}
|
161 |
"""
|
162 |
|
163 |
-
with gr.Blocks(css=css) as demo:
|
164 |
-
with gr.Column(elem_id="col-container"):
|
165 |
-
gr.Markdown(intro_markdown)
|
166 |
-
with gr.Row():
|
167 |
-
with gr.Column():
|
168 |
-
with gr.Column():
|
169 |
-
furniture_image = gr.Image(
|
170 |
-
label="Furniture Image",
|
171 |
-
type="pil",
|
172 |
-
sources=["upload"],
|
173 |
-
image_mode="RGB",
|
174 |
-
height=400,
|
175 |
-
)
|
176 |
-
room_image = gr.ImageEditor(
|
177 |
-
label="Room Image - Draw mask for inpainting",
|
178 |
-
type="pil",
|
179 |
-
sources=["upload"],
|
180 |
-
image_mode="RGBA",
|
181 |
-
layers=False,
|
182 |
-
crop_size="1:1",
|
183 |
-
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
|
184 |
-
height=400,
|
185 |
-
)
|
186 |
-
prompt = gr.Text(
|
187 |
-
label="Prompt",
|
188 |
-
show_label=False,
|
189 |
-
max_lines=1,
|
190 |
-
placeholder="Enter a custom furniture description (optional)",
|
191 |
-
container=False,
|
192 |
-
)
|
193 |
-
run_button = gr.Button("Run")
|
194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
results = gr.Gallery(
|
196 |
label="Results",
|
197 |
format="png",
|
198 |
show_label=False,
|
199 |
columns=2,
|
200 |
-
height=
|
201 |
-
)
|
202 |
-
|
203 |
-
with gr.Accordion("Advanced Settings", open=False):
|
204 |
-
seed = gr.Slider(
|
205 |
-
label="Seed",
|
206 |
-
minimum=0,
|
207 |
-
maximum=MAX_SEED,
|
208 |
-
step=1,
|
209 |
-
value=0,
|
210 |
)
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
minimum=1,
|
218 |
-
maximum=30,
|
219 |
-
step=0.5,
|
220 |
-
# value=50,
|
221 |
-
value=3.5,
|
222 |
-
)
|
223 |
-
|
224 |
-
num_inference_steps = gr.Slider(
|
225 |
-
label="Number of inference steps",
|
226 |
-
minimum=1,
|
227 |
-
maximum=50,
|
228 |
step=1,
|
229 |
-
value=
|
230 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
gr.on(
|
233 |
-
triggers=[run_button.click,
|
234 |
fn=infer,
|
235 |
inputs=[
|
236 |
furniture_image,
|
237 |
room_image,
|
238 |
-
|
239 |
seed,
|
240 |
randomize_seed,
|
241 |
guidance_scale,
|
242 |
num_inference_steps,
|
|
|
243 |
],
|
244 |
outputs=[results, seed],
|
245 |
)
|
|
|
1 |
import secrets
|
2 |
+
from pathlib import Path
|
3 |
from typing import cast
|
4 |
|
5 |
import gradio as gr
|
|
|
12 |
|
13 |
DEVICE = "cuda"
|
14 |
|
15 |
+
EXAMPLES_DIR = Path(__file__).parent / "examples"
|
16 |
+
|
17 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
|
18 |
|
19 |
SYSTEM_PROMPT = r"""This two-panel split-frame image showcases a furniture in as a product shot versus styled in a room.
|
20 |
[LEFT] standalone product shot image the furniture on a white background.
|
|
|
30 |
state_dict, network_alphas = FluxFillPipeline.lora_state_dict(
|
31 |
pretrained_model_name_or_path_or_dict="blanchon/FluxFillFurniture",
|
32 |
weight_name="pytorch_lora_weights3.safetensors",
|
33 |
+
torch_dtype=torch.bfloat16,
|
34 |
return_alphas=True,
|
35 |
)
|
36 |
|
|
|
44 |
FluxFillPipeline.load_lora_into_transformer(
|
45 |
state_dict=state_dict,
|
46 |
network_alphas=network_alphas,
|
47 |
+
torch_dtype=torch.bfloat16,
|
48 |
transformer=pipe.transformer,
|
49 |
)
|
50 |
pipe.to(DEVICE)
|
51 |
|
52 |
|
53 |
+
def make_example(image_path: Path, mask_path: Path) -> EditorValue:
|
54 |
+
background_image = Image.open(image_path)
|
55 |
+
background_image = background_image.convert("RGB")
|
56 |
+
background = np.array(background_image)
|
57 |
+
|
58 |
+
mask_image = Image.open(mask_path)
|
59 |
+
mask_image = mask_image.convert("RGB")
|
60 |
+
|
61 |
+
mask = np.array(mask_image)
|
62 |
+
mask = mask[:, :, 0]
|
63 |
+
mask = np.where(mask == 255, 0, 255) # noqa: PLR2004
|
64 |
+
|
65 |
+
if background.shape[0] != mask.shape[0] or background.shape[1] != mask.shape[1]:
|
66 |
+
msg = "Background and mask must have the same shape"
|
67 |
+
raise ValueError(msg)
|
68 |
+
|
69 |
+
layer = np.zeros((background.shape[0], background.shape[1], 4), dtype=np.uint8)
|
70 |
+
layer[:, :, 3] = mask
|
71 |
+
|
72 |
+
composite = np.zeros((background.shape[0], background.shape[1], 4), dtype=np.uint8)
|
73 |
+
composite[:, :, :3] = background
|
74 |
+
composite[:, :, 3] = np.where(mask == 255, 0, 255) # noqa: PLR2004
|
75 |
+
|
76 |
+
return {
|
77 |
+
"background": background,
|
78 |
+
"layers": [layer],
|
79 |
+
"composite": composite,
|
80 |
+
}
|
81 |
+
|
82 |
+
|
83 |
@spaces.GPU(duration=150)
|
84 |
def infer(
|
85 |
furniture_image: Image.Image,
|
|
|
89 |
randomize_seed: bool = False,
|
90 |
guidance_scale: float = 3.5,
|
91 |
num_inference_steps: int = 20,
|
92 |
+
max_dimension: int = 720,
|
93 |
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008
|
94 |
):
|
95 |
+
# Ensure max_dimension is a multiple of 16 (for VAE)
|
96 |
+
max_dimension = (max_dimension // 16) * 16
|
97 |
+
|
98 |
_room_image = room_image["background"]
|
99 |
if _room_image is None:
|
100 |
msg = "Room image is required"
|
101 |
raise ValueError(msg)
|
102 |
+
_room_image = cast("Image.Image", _room_image)
|
103 |
_room_image = ImageOps.fit(
|
104 |
_room_image,
|
105 |
+
(max_dimension, max_dimension),
|
106 |
method=Image.Resampling.LANCZOS,
|
107 |
centering=(0.5, 0.5),
|
108 |
)
|
|
|
111 |
if _room_mask is None:
|
112 |
msg = "Room mask is required"
|
113 |
raise ValueError(msg)
|
114 |
+
_room_mask = cast("Image.Image", _room_mask)
|
115 |
_room_mask = ImageOps.fit(
|
116 |
_room_mask,
|
117 |
+
(max_dimension, max_dimension),
|
118 |
method=Image.Resampling.LANCZOS,
|
119 |
centering=(0.5, 0.5),
|
120 |
)
|
121 |
|
122 |
+
# _room_image.save("room_image.png")
|
123 |
+
# _room_mask_with_white_background = Image.new(
|
124 |
+
# "RGB", _room_mask.size, (255, 255, 255)
|
125 |
+
# )
|
126 |
+
# _room_mask_with_white_background.paste(_room_mask, (0, 0), _room_mask)
|
127 |
+
# _room_mask_with_white_background.save("room_mask.png")
|
128 |
+
|
129 |
furniture_image = ImageOps.fit(
|
130 |
furniture_image,
|
131 |
+
(max_dimension, max_dimension),
|
132 |
method=Image.Resampling.LANCZOS,
|
133 |
centering=(0.5, 0.5),
|
134 |
)
|
135 |
_furniture_image = Image.new(
|
136 |
"RGB",
|
137 |
+
(max_dimension, max_dimension),
|
138 |
(255, 255, 255),
|
139 |
)
|
140 |
_furniture_image.paste(furniture_image, (0, 0))
|
141 |
|
142 |
+
# _furniture_image.save("furniture_image.png")
|
143 |
+
|
144 |
+
_furniture_mask = Image.new("RGB", (max_dimension, max_dimension), (255, 255, 255))
|
145 |
|
146 |
image = Image.new(
|
147 |
"RGB",
|
148 |
+
(max_dimension * 2, max_dimension),
|
149 |
(255, 255, 255),
|
150 |
)
|
151 |
# Paste on the center of the image
|
152 |
image.paste(_furniture_image, (0, 0))
|
153 |
+
image.paste(_room_image, (max_dimension, 0))
|
154 |
|
155 |
mask = Image.new(
|
156 |
"RGB",
|
157 |
+
(max_dimension * 2, max_dimension),
|
158 |
(255, 255, 255),
|
159 |
)
|
160 |
mask.paste(_furniture_mask, (0, 0))
|
161 |
+
mask.paste(_room_mask, (max_dimension, 0), _room_mask)
|
162 |
# Invert the mask
|
163 |
mask = ImageOps.invert(mask)
|
164 |
# Blur the mask
|
|
|
174 |
prompt=prompt,
|
175 |
image=image,
|
176 |
mask_image=mask,
|
177 |
+
height=max_dimension,
|
178 |
+
width=max_dimension * 2,
|
179 |
num_inference_steps=num_inference_steps,
|
180 |
guidance_scale=guidance_scale,
|
181 |
num_images_per_prompt=2,
|
|
|
183 |
)["images"]
|
184 |
|
185 |
cropped_images = [
|
186 |
+
image.crop((max_dimension, 0, max_dimension * 2, max_dimension))
|
187 |
for image in results_images
|
188 |
]
|
189 |
|
190 |
return cropped_images, seed
|
191 |
|
192 |
|
193 |
+
intro_markdown = r"""
|
194 |
+
<div>
|
195 |
+
<div>
|
196 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 40px;">
|
197 |
+
<b>AnyFurnish</b>
|
198 |
+
</div>
|
199 |
+
<br>
|
200 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
201 |
+
<a href="https://github.com/julien-blanchon/"><img src="https://img.shields.io/static/v1?label=Github Report&message=Github&color=green"></a>  
|
202 |
+
</div>
|
203 |
+
<br>
|
204 |
+
<div style="display: flex; text-align: center; font-size: 14px; padding-right: 300px; padding-left: 300px;">
|
205 |
+
AnyFurnish is a tool that allows you to generate furniture images using Flux.1 Fill Dev.
|
206 |
+
You can upload a furniture image and a room image, and the tool will generate a new image with the furniture in the room.
|
207 |
+
</div>
|
208 |
+
</div>
|
209 |
+
</div>
|
210 |
"""
|
211 |
|
212 |
+
css = r"""
|
213 |
+
#col-left {
|
214 |
margin: 0 auto;
|
215 |
+
max-width: 430px;
|
216 |
+
}
|
217 |
+
#col-mid {
|
218 |
+
margin: 0 auto;
|
219 |
+
max-width: 430px;
|
220 |
+
}
|
221 |
+
#col-right {
|
222 |
+
margin: 0 auto;
|
223 |
+
max-width: 430px;
|
224 |
+
}
|
225 |
+
#col-showcase {
|
226 |
+
margin: 0 auto;
|
227 |
+
max-width: 1100px;
|
228 |
}
|
229 |
"""
|
230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
+
with gr.Blocks(css=css) as demo:
|
233 |
+
gr.Markdown(intro_markdown)
|
234 |
+
with gr.Row():
|
235 |
+
with gr.Column(elem_id="col-left"):
|
236 |
+
gr.HTML(
|
237 |
+
"""
|
238 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
|
239 |
+
<div>
|
240 |
+
Step 1. Upload a furniture image ⬇️
|
241 |
+
</div>
|
242 |
+
</div>
|
243 |
+
""",
|
244 |
+
max_height=50,
|
245 |
+
)
|
246 |
+
furniture_image = gr.Image(
|
247 |
+
label="Furniture Image",
|
248 |
+
type="pil",
|
249 |
+
sources=["upload"],
|
250 |
+
image_mode="RGB",
|
251 |
+
height=500,
|
252 |
+
)
|
253 |
+
furniture_prompt = gr.Text(
|
254 |
+
label="Prompt",
|
255 |
+
max_lines=1,
|
256 |
+
placeholder="Enter a custom furniture description (optional)",
|
257 |
+
container=False,
|
258 |
+
)
|
259 |
+
with gr.Column(elem_id="col-mid"):
|
260 |
+
gr.HTML(
|
261 |
+
"""
|
262 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
|
263 |
+
<div>
|
264 |
+
Step 2. Upload a room image ⬇️
|
265 |
+
</div>
|
266 |
+
</div>
|
267 |
+
""",
|
268 |
+
max_height=50,
|
269 |
+
)
|
270 |
+
room_image = gr.ImageEditor(
|
271 |
+
label="Room Image - Draw mask for inpainting",
|
272 |
+
type="pil",
|
273 |
+
sources=["upload"],
|
274 |
+
image_mode="RGBA",
|
275 |
+
layers=False,
|
276 |
+
crop_size="1:1",
|
277 |
+
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
|
278 |
+
height=500,
|
279 |
+
)
|
280 |
+
with gr.Column(elem_id="col-right"):
|
281 |
+
gr.HTML(
|
282 |
+
"""
|
283 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
|
284 |
+
<div>
|
285 |
+
Step 3. Press Run to launch
|
286 |
+
</div>
|
287 |
+
</div>
|
288 |
+
""",
|
289 |
+
max_height=50,
|
290 |
+
)
|
291 |
results = gr.Gallery(
|
292 |
label="Results",
|
293 |
format="png",
|
294 |
show_label=False,
|
295 |
columns=2,
|
296 |
+
height=500,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
)
|
298 |
+
run_button = gr.Button("Run")
|
299 |
+
with gr.Accordion("Advanced Settings", open=False):
|
300 |
+
seed = gr.Slider(
|
301 |
+
label="Seed",
|
302 |
+
minimum=0,
|
303 |
+
maximum=MAX_SEED,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
step=1,
|
305 |
+
value=0,
|
306 |
)
|
307 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
308 |
+
with gr.Column():
|
309 |
+
max_dimension = gr.Slider(
|
310 |
+
label="Max Dimension",
|
311 |
+
minimum=512,
|
312 |
+
maximum=1024,
|
313 |
+
step=128,
|
314 |
+
value=720,
|
315 |
+
)
|
316 |
+
|
317 |
+
guidance_scale = gr.Slider(
|
318 |
+
label="Guidance Scale",
|
319 |
+
minimum=1,
|
320 |
+
maximum=30,
|
321 |
+
step=0.5,
|
322 |
+
# value=50, # noqa: ERA001
|
323 |
+
value=30,
|
324 |
+
)
|
325 |
+
|
326 |
+
num_inference_steps = gr.Slider(
|
327 |
+
label="Number of inference steps",
|
328 |
+
minimum=1,
|
329 |
+
maximum=50,
|
330 |
+
step=1,
|
331 |
+
value=20,
|
332 |
+
)
|
333 |
|
334 |
+
with gr.Column(elem_id="col-showcase"):
|
335 |
+
gr.HTML("""
|
336 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
|
337 |
+
<div> </div>
|
338 |
+
<br>
|
339 |
+
<div>
|
340 |
+
AnyFurnish examples in pairs of furniture and room images
|
341 |
+
</div>
|
342 |
+
</div>
|
343 |
+
""")
|
344 |
+
show_case = gr.Examples(
|
345 |
+
examples=[
|
346 |
+
[
|
347 |
+
EXAMPLES_DIR / "1" / "furniture_image.png",
|
348 |
+
make_example(
|
349 |
+
EXAMPLES_DIR / "1" / "room_image.png",
|
350 |
+
EXAMPLES_DIR / "1" / "room_mask.png",
|
351 |
+
),
|
352 |
+
],
|
353 |
+
[
|
354 |
+
EXAMPLES_DIR / "2" / "furniture_image.png",
|
355 |
+
make_example(
|
356 |
+
EXAMPLES_DIR / "2" / "room_image.png",
|
357 |
+
EXAMPLES_DIR / "2" / "room_mask.png",
|
358 |
+
),
|
359 |
+
],
|
360 |
+
],
|
361 |
+
inputs=[furniture_image, room_image],
|
362 |
+
label=None,
|
363 |
+
)
|
364 |
gr.on(
|
365 |
+
triggers=[run_button.click, furniture_prompt.submit],
|
366 |
fn=infer,
|
367 |
inputs=[
|
368 |
furniture_image,
|
369 |
room_image,
|
370 |
+
furniture_prompt,
|
371 |
seed,
|
372 |
randomize_seed,
|
373 |
guidance_scale,
|
374 |
num_inference_steps,
|
375 |
+
max_dimension,
|
376 |
],
|
377 |
outputs=[results, seed],
|
378 |
)
|
examples/1/furniture_image.png
ADDED
examples/1/room_image.png
ADDED
examples/1/room_mask.png
ADDED
examples/2/furniture_image.png
ADDED
examples/2/room_image.png
ADDED
examples/2/room_mask.png
ADDED