File size: 4,822 Bytes
ac42789
 
 
7dc5008
 
 
 
 
ac42789
 
7dc5008
 
 
 
ac42789
 
7dc5008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac42789
 
 
 
7dc5008
 
ac42789
7dc5008
ac42789
7dc5008
ac42789
 
 
7dc5008
 
ac42789
7dc5008
ac42789
 
7dc5008
 
 
 
 
 
 
 
ac42789
 
7dc5008
 
 
ac42789
 
7dc5008
ac42789
 
7dc5008
 
ac42789
7dc5008
ac42789
7dc5008
 
 
 
 
ac42789
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import cv2
import numpy as np
import torch
from matplotlib import pyplot as plt
from ultralytics import YOLO


DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Data
test_image = "data/DJI_20240905091530_0003_W.JPG"

LABELS = {0: "Boş", 1: "Çelik Direkler", 2: "Kafes Kule", 3: "Kablo", 4: "Ahşap Kule"}
colorMap = {"Boş":"#ffffff", "Çelik Direkler":"#0000ff", "Kafes Kule":"#ff0000", "Kablo":"#00ff00", "Ahşap Kule":"#ff0000"}

# Load a model
model = YOLO("Weight/yolov9c-cable-seg.pt")  # load a custom model
model.fuse()


def ParseResults(results, threshold=0.5, scale_masks=True):
    batches = []
    
    SCORES = torch.Tensor([]).to(DEVICE)
    CLASSES = torch.Tensor([]).to(DEVICE)
    MASKS = torch.Tensor([]).to(DEVICE)
    BOXES = torch.Tensor([]).to(DEVICE)

    with torch.no_grad():
        for result in results:
            original_shape = result.orig_shape
            _scores = result.boxes.conf        # 7
            _classes = result.boxes.cls         # 7
            _masks = result.masks.data         # 7, 480, 640
            _boxes = result.boxes.xyxy         # 7, 4
            
            # Threshold Filter
            conditions = _scores > threshold
            SCORES = torch.cat((SCORES, _scores[conditions]), dim=0)
            CLASSES = torch.cat((CLASSES, _classes[conditions]), dim=0)
            BOXES = torch.cat((BOXES, _boxes[conditions]), dim=0)
            mask = _masks[conditions]
            if scale_masks:
                mask = ScaleMasks(mask, original_shape[:2])

            MASKS = torch.cat((MASKS, mask), dim=0)
            
            batches += [(SCORES, CLASSES, MASKS, BOXES)]

    return batches
 

def ScaleMasks(masks: torch.Tensor, shape: tuple) -> torch.Tensor:
    masks = masks.unsqueeze(0)
    interpolatedMask:torch.Tensor = torch.nn.functional.interpolate(masks, shape, mode="nearest")
    interpolatedMask = interpolatedMask.squeeze(0)
    return interpolatedMask


def DrawResults(image, scores: torch.Tensor, classes: torch.Tensor, masks: torch.Tensor, boxes: torch.Tensor, labels:dict=LABELS, class_filter:list=None):
    _image = np.array(image).copy()
    _image = cv2.cvtColor(_image, cv2.COLOR_BGR2RGB)
    maskCanvas = np.zeros_like(_image)


    with torch.no_grad():
        scores = scores.cpu().numpy()
        classes = classes.cpu().numpy().astype(np.int32)
        masks = masks.cpu().numpy()
        boxes = boxes.cpu().numpy()
    
    for score, cls, mask, box in zip(scores, classes, masks, boxes):
        label = labels[cls]

        if class_filter and cls not in class_filter:
            continue

        box = box.astype(np.int32)
        mask = cv2.cvtColor(mask*255, cv2.COLOR_GRAY2BGR).astype(np.uint8)
        maskCanvas = cv2.addWeighted(maskCanvas, 1.0, mask, 1.0, 0)
        maskCanvas = cv2.rectangle(maskCanvas, (box[0], box[1]), (box[2], box[3]), color=(255, 0, 0), thickness=3)  # Red color for bounding box
        maskCanvas = cv2.putText(maskCanvas, f"{label} : {score:.2f}", (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color=(255, 0, 0), thickness=2)
    
    canvas = cv2.addWeighted(_image, 1.0, maskCanvas.astype(np.uint8), 1.0, 0)
    return canvas, maskCanvas


def RescaleTheMask(orijinal_image, masks):
    _masks = []
    for contour in masks:
        b_mask = np.zeros(orijinal_image.shape[:2], np.uint8)
        contour = contour.astype(np.int32)
        # contour = contour.reshape(-1, 1, 2)

        w = orijinal_image.shape[0]
        h = orijinal_image.shape[1]

        mask = cv2.drawContours(b_mask, [contour], -1, (1, 1, 1), cv2.FILLED)
        _masks += [mask]

    return _masks



image = cv2.imread(test_image)


with torch.no_grad():
    results = model(
        image,
        save=False,
        show_boxes=False,
        project="./inference/",
        conf=0.5,
        iou=0.7,
        retina_masks=False
    )

    batches = ParseResults(results, threshold=0.5, scale_masks=True)
    scores, classes, masks, boxes = batches[0]

    canvas, mask = DrawResults(image, scores, classes, masks, boxes, class_filter=[3])


    # ALL Segmentation
    # canvas = torch.any(result.masks.data, dim=0).int() * 255
    
    # Instance Segmentation
    # objIdx = torch.where(result.boxes.cls.data == 3)
    # objMasks = result.masks.data[objIdx]
    # obj_mask = torch.any(objMasks, dim=0).int() * 255
    


#! Plot
fig, axs = plt.subplots(2, 2, figsize=(27, 15))
axs[0][0].imshow(image)
axs[0][0].set_title("Orijinal Görüntü")

axs[0][1].imshow(mask)
axs[0][1].set_title("Segmentasyon Maskesi")

# axs[1][0].imshow(obj_mask.cpu().numpy())
# axs[1][0].set_title("Seçilen")

axs[1][1].imshow(canvas)
axs[1][1].set_title("Sonuç")

# mask = np.array(obj_mask.cpu().numpy())*255
# cv2.imwrite("cable_mask.png", mask)

plt.tight_layout()
plt.show()