blitzkrieg0000's picture
Update Lib/Core.py
3ddfba1 verified
raw
history blame
5.13 kB
import os
import sys
sys.path.append(os.getcwd())
import cv2
import numpy as np
import torch
from matplotlib import pyplot as plt
from ultralytics import YOLO
from Lib.Consts import LABELS, COLOR_MAP, COLOR_MAP_RGB
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class CablePoleSegmentation():
def __init__(self, model_path=None, retina_mask=False):
if not model_path:
model_path = "./weight/yolov9c-cable-seg.pt"
self._RetinaMask=retina_mask
self.Model = None
self.PrepareModel(model_path)
def PrepareModel(self, model_path):
self.Model = YOLO(model_path)
self.Model.fuse()
def ScaleMasks(self, masks: torch.Tensor, shape: tuple) -> torch.Tensor:
masks = masks.unsqueeze(0)
interpolatedMask:torch.Tensor = torch.nn.functional.interpolate(masks, shape, mode="nearest")
interpolatedMask = interpolatedMask.squeeze(0)
return interpolatedMask
def ParseResults(self, results, threshold=0.5, scale_masks=True):
batches = []
SCORES = torch.Tensor([]).to(DEVICE)
CLASSES = torch.Tensor([]).to(DEVICE)
MASKS = torch.Tensor([]).to(DEVICE)
BOXES = torch.Tensor([]).to(DEVICE)
with torch.no_grad():
for result in results:
original_shape = result.orig_shape
_scores = result.boxes.conf # 7
_classes = result.boxes.cls # 7
_masks = result.masks.data # 7, 480, 640
_boxes = result.boxes.xyxy # 7, 4
# Threshold Filter
conditions = _scores > threshold
SCORES = torch.cat((SCORES, _scores[conditions]), dim=0)
CLASSES = torch.cat((CLASSES, _classes[conditions]), dim=0)
BOXES = torch.cat((BOXES, _boxes[conditions]), dim=0)
mask = _masks[conditions]
if mask.shape[0] == 0:
continue
if scale_masks:
mask = self.ScaleMasks(mask, original_shape[:2])
MASKS = torch.cat((MASKS, mask), dim=0)
batches += [(SCORES, CLASSES, MASKS, BOXES)]
return batches
def DrawResults(self, image, scores: torch.Tensor, classes: torch.Tensor, masks: torch.Tensor, boxes: torch.Tensor, labels:dict=LABELS, class_filter:list=None):
_image = np.array(image).copy()
_image = cv2.cvtColor(_image, cv2.COLOR_BGR2RGB)
maskCanvas = np.zeros_like(_image)
with torch.no_grad():
scores = scores.cpu().numpy()
classes = classes.cpu().numpy().astype(np.int32)
masks = masks.cpu().numpy()
boxes = boxes.cpu().numpy()
colors = list(COLOR_MAP_RGB.values())
for score, cls, mask, box in zip(scores, classes, masks, boxes):
label = labels[cls]
_color = colors[cls]
if class_filter and cls not in class_filter:
continue
box = box.astype(np.int32)
mask = (cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)*_color).astype(np.uint8)
maskCanvas = cv2.addWeighted(maskCanvas, 1.0, mask, 1.0, 0)
maskCanvas = cv2.rectangle(maskCanvas, (box[0], box[1]), (box[2], box[3]), color=_color, thickness=5) # Red color for bounding box
maskCanvas = cv2.putText(maskCanvas, f"{label} : {score:.2f}", (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color=_color, thickness=2)
canvas = cv2.addWeighted(_image, 1.0, maskCanvas.astype(np.uint8), 0.5, 0)
return canvas, maskCanvas
def Process(self, image, model_threshold=0.6, overall_threshold=0.6, iou=0.7, class_filter:list=None):
with torch.no_grad():
results = self.Model(
image,
save=False,
show_boxes=False,
project="./inference/",
conf=model_threshold,
iou=iou,
retina_masks=False,
stream=True,
classes=class_filter,
device=DEVICE
)
batches = self.ParseResults(results, threshold=overall_threshold, scale_masks=True)
return batches
if "__main__" == __name__:
test = "data/DJI_20240905091530_0003_W.JPG"
image = cv2.imread(test)
model = CablePoleSegmentation(retina_mask=False)
batches = model.Process(image)
if len(batches) == 0:
exit()
scores, classes, masks, boxes = batches[0] # First
canvas, mask = model.DrawResults(image, scores, classes, masks, boxes, class_filter=None)
print(canvas.shape)
#! Plot
fig, axs = plt.subplots(1, 3, figsize=(27, 15))
axs[0].imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
axs[0].set_title("Orijinal Görüntü")
axs[1].imshow(mask)
axs[1].set_title("Segmentasyon Maskesi")
axs[2].imshow(canvas)
axs[2].set_title("Sonuç")
plt.tight_layout()
plt.show()