import streamlit as st from datasets import load_dataset from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from time import time import torch @st.cache( allow_output_mutation=True, hash_funcs={ AutoTokenizer: lambda x: None, AutoModelForSeq2SeqLM: lambda x: None, }, suppress_st_warning=True ) def load_models(): st_time = time() tokenizer = AutoTokenizer.from_pretrained("Babelscape/rebel-large") print("+++++ loading Model", time() - st_time) model = AutoModelForSeq2SeqLM.from_pretrained("Babelscape/rebel-large") if torch.cuda.is_available(): _ = model.to("cuda:0") # comment if no GPU available _ = model.eval() print("+++++ loaded model", time() - st_time) dataset = load_dataset('Babelscape/rebel-dataset', split="validation", streaming=True) dataset = [example for example in dataset.take(1001)] return (tokenizer, model, dataset) def extract_triplets(text): triplets = [] relation, subject, relation, object_ = '', '', '', '' text = text.strip() current = 'x' for token in text.split(): if token == "": current = 't' if relation != '': triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()}) relation = '' subject = '' elif token == "": current = 's' if relation != '': triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()}) object_ = '' elif token == "": current = 'o' relation = '' else: if current == 't': subject += ' ' + token elif current == 's': object_ += ' ' + token elif current == 'o': relation += ' ' + token if subject != '' and relation != '' and object_ != '': triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()}) return triplets st.markdown("""This is a demo for the Findings of EMNLP 2021 paper [REBEL: Relation Extraction By End-to-end Language generation](https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf). The pre-trained model is able to extract triplets for up to 200 relation types from Wikidata or be used in downstream Relation Extraction task by fine-tuning. Find the model card [here](https://huggingface.co/Babelscape/rebel-large). Read more about it in the [paper](https://aclanthology.org/2021.findings-emnlp.204) and in the original [repository](https://github.com/Babelscape/rebel).""") tokenizer, model, dataset = load_models() agree = st.checkbox('Free input', False) if agree: text = st.text_input('Input text', 'Punta Cana is a resort town in the municipality of Higüey, in La Altagracia Province, the easternmost province of the Dominican Republic.') print(text) else: dataset_example = st.slider('dataset id', 0, 1000, 0) text = dataset[dataset_example]['context'] length_penalty = st.slider('length_penalty', 0, 10, 0) num_beams = st.slider('num_beams', 1, 20, 3) num_return_sequences = st.slider('num_return_sequences', 1, num_beams, 2) gen_kwargs = { "max_length": 256, "length_penalty": length_penalty, "num_beams": num_beams, "num_return_sequences": num_return_sequences, } model_inputs = tokenizer(text, max_length=256, padding=True, truncation=True, return_tensors = 'pt') generated_tokens = model.generate( model_inputs["input_ids"].to(model.device), attention_mask=model_inputs["attention_mask"].to(model.device), **gen_kwargs, ) decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=False) st.title('Input text') st.write(text) if not agree: st.title('Silver output') st.write(dataset[dataset_example]['triplets']) st.write(extract_triplets(dataset[dataset_example]['triplets'])) st.title('Prediction text') decoded_preds = [text.replace('', '').replace('', '').replace('', '') for text in decoded_preds] st.write(decoded_preds) for idx, sentence in enumerate(decoded_preds): st.title(f'Prediction triplets sentence {idx}') st.write(extract_triplets(sentence))