Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
|
4 |
-
from threading import Thread
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
9 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
10 |
CONTEXT_LENGTH = 16000
|
11 |
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
|
|
|
31 |
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
32 |
-
|
33 |
if CHAT_TEMPLATE == "Auto":
|
34 |
stop_tokens = [tokenizer.eos_token_id]
|
35 |
instruction = system_prompt + "\n\n"
|
@@ -50,19 +74,19 @@ def predict(message, history, system_prompt, temperature, max_new_tokens, top_k,
|
|
50 |
instruction += f' {message} [/INST]'
|
51 |
else:
|
52 |
raise Exception("Incorrect chat template, select 'Auto', 'ChatML' or 'Mistral Instruct'")
|
53 |
-
|
54 |
|
55 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
56 |
enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True)
|
57 |
-
input_ids, attention_mask = enc.input_ids
|
58 |
|
59 |
if input_ids.shape[1] > CONTEXT_LENGTH:
|
60 |
input_ids = input_ids[:, -CONTEXT_LENGTH:]
|
61 |
attention_mask = attention_mask[:, -CONTEXT_LENGTH:]
|
62 |
|
63 |
generate_kwargs = dict(
|
64 |
-
input_ids=input_ids,
|
65 |
-
attention_mask=attention_mask,
|
66 |
streamer=streamer,
|
67 |
do_sample=True,
|
68 |
temperature=temperature,
|
@@ -81,10 +105,28 @@ def predict(message, history, system_prompt, temperature, max_new_tokens, top_k,
|
|
81 |
yield "".join(outputs)
|
82 |
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
gr.ChatInterface(
|
85 |
predict,
|
86 |
title=EMOJI + " " + MODEL_NAME,
|
87 |
description=DESCRIPTION,
|
|
|
|
|
|
|
88 |
additional_inputs_accordion=gr.Accordion(label="鈿欙笍 Parameters", open=False),
|
89 |
additional_inputs=[
|
90 |
gr.Textbox("You are a code assistant.", label="System prompt"),
|
@@ -95,4 +137,4 @@ gr.ChatInterface(
|
|
95 |
gr.Slider(0, 1, 0.95, label="Top P sampling"),
|
96 |
],
|
97 |
theme=gr.themes.Soft(primary_hue=COLOR),
|
98 |
-
).queue().launch()
|
|
|
1 |
+
|
2 |
+
import json
|
3 |
+
import subprocess
|
4 |
+
from threading import Thread
|
5 |
+
|
6 |
import torch
|
7 |
+
import spaces
|
8 |
import gradio as gr
|
9 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
|
|
|
10 |
|
11 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
12 |
+
|
13 |
+
MODEL_ID = "nikravan/Marco_o1_q4"
|
14 |
+
CHAT_TEMPLATE = "ChatML"
|
15 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
16 |
CONTEXT_LENGTH = 16000
|
17 |
|
18 |
+
# Estableciendo valores directamente para las variables
|
19 |
+
COLOR = "blue" # Color predeterminado de la interfaz
|
20 |
+
EMOJI = "馃" # Emoji predeterminado para el modelo
|
21 |
+
DESCRIPTION = f"This is the {MODEL_NAME} model designed for testing thinking for general AI tasks." # Descripci贸n predeterminada
|
22 |
|
23 |
+
latex_delimiters_set = [{
|
24 |
+
"left": "\\(",
|
25 |
+
"right": "\\)",
|
26 |
+
"display": False
|
27 |
+
}, {
|
28 |
+
"left": "\\begin{equation}",
|
29 |
+
"right": "\\end{equation}",
|
30 |
+
"display": True
|
31 |
+
}, {
|
32 |
+
"left": "\\begin{align}",
|
33 |
+
"right": "\\end{align}",
|
34 |
+
"display": True
|
35 |
+
}, {
|
36 |
+
"left": "\\begin{alignat}",
|
37 |
+
"right": "\\end{alignat}",
|
38 |
+
"display": True
|
39 |
+
}, {
|
40 |
+
"left": "\\begin{gather}",
|
41 |
+
"right": "\\end{gather}",
|
42 |
+
"display": True
|
43 |
+
}, {
|
44 |
+
"left": "\\begin{CD}",
|
45 |
+
"right": "\\end{CD}",
|
46 |
+
"display": True
|
47 |
+
}, {
|
48 |
+
"left": "\\[",
|
49 |
+
"right": "\\]",
|
50 |
+
"display": True
|
51 |
+
}]
|
52 |
|
53 |
|
54 |
+
@spaces.GPU()
|
55 |
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
56 |
+
# Format history with a given chat template
|
57 |
if CHAT_TEMPLATE == "Auto":
|
58 |
stop_tokens = [tokenizer.eos_token_id]
|
59 |
instruction = system_prompt + "\n\n"
|
|
|
74 |
instruction += f' {message} [/INST]'
|
75 |
else:
|
76 |
raise Exception("Incorrect chat template, select 'Auto', 'ChatML' or 'Mistral Instruct'")
|
77 |
+
print(instruction)
|
78 |
|
79 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
80 |
enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True)
|
81 |
+
input_ids, attention_mask = enc.input_ids, enc.attention_mask
|
82 |
|
83 |
if input_ids.shape[1] > CONTEXT_LENGTH:
|
84 |
input_ids = input_ids[:, -CONTEXT_LENGTH:]
|
85 |
attention_mask = attention_mask[:, -CONTEXT_LENGTH:]
|
86 |
|
87 |
generate_kwargs = dict(
|
88 |
+
input_ids=input_ids.to(device),
|
89 |
+
attention_mask=attention_mask.to(device),
|
90 |
streamer=streamer,
|
91 |
do_sample=True,
|
92 |
temperature=temperature,
|
|
|
105 |
yield "".join(outputs)
|
106 |
|
107 |
|
108 |
+
# Load model
|
109 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
110 |
+
quantization_config = BitsAndBytesConfig(
|
111 |
+
load_in_4bit=True,
|
112 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
113 |
+
)
|
114 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
115 |
+
model = AutoModelForCausalLM.from_pretrained(
|
116 |
+
MODEL_ID,
|
117 |
+
device_map="auto",
|
118 |
+
quantization_config=quantization_config,
|
119 |
+
attn_implementation="flash_attention_2",
|
120 |
+
)
|
121 |
+
|
122 |
+
# Create Gradio interface
|
123 |
gr.ChatInterface(
|
124 |
predict,
|
125 |
title=EMOJI + " " + MODEL_NAME,
|
126 |
description=DESCRIPTION,
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
additional_inputs_accordion=gr.Accordion(label="鈿欙笍 Parameters", open=False),
|
131 |
additional_inputs=[
|
132 |
gr.Textbox("You are a code assistant.", label="System prompt"),
|
|
|
137 |
gr.Slider(0, 1, 0.95, label="Top P sampling"),
|
138 |
],
|
139 |
theme=gr.themes.Soft(primary_hue=COLOR),
|
140 |
+
).queue().launch()
|