Spaces:
Sleeping
Sleeping
...
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Step 1: Import libraries
|
2 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
import torch
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# Step 2: Load model and processor
|
8 |
+
model = DetrForObjectDetection.from_pretrained("hilmantm/detr-traffic-accident-detection")
|
9 |
+
processor = DetrImageProcessor.from_pretrained("hilmantm/detr-traffic-accident-detection")
|
10 |
+
|
11 |
+
# Step 3: Define the inference logic
|
12 |
+
def detect_traffic_accidents(image):
|
13 |
+
# Preprocess image
|
14 |
+
inputs = processor(images=image, return_tensors="pt")
|
15 |
+
|
16 |
+
# Run model inference
|
17 |
+
outputs = model(**inputs)
|
18 |
+
|
19 |
+
# Extract detections
|
20 |
+
target_sizes = torch.tensor([image.size[::-1]]) # Width, height
|
21 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
22 |
+
|
23 |
+
# Annotate image with bounding boxes
|
24 |
+
draw = ImageDraw.Draw(image)
|
25 |
+
for box, score, label in zip(results["boxes"], results["scores"], results["labels"]):
|
26 |
+
if score > 0.9: # Confidence threshold
|
27 |
+
x_min, y_min, x_max, y_max = box
|
28 |
+
draw.rectangle([x_min, y_min, x_max, y_max], outline="red", width=3)
|
29 |
+
draw.text((x_min, y_min), f"{model.config.id2label[label]}: {score:.2f}", fill="red")
|
30 |
+
|
31 |
+
return image
|
32 |
+
|
33 |
+
# Step 4: Define the Gradio Interface
|
34 |
+
def api_endpoint(input_image):
|
35 |
+
output_image = detect_traffic_accidents(input_image)
|
36 |
+
return output_image
|
37 |
+
|
38 |
+
# Step 5: Launch Gradio app
|
39 |
+
iface = gr.Interface(
|
40 |
+
fn=api_endpoint,
|
41 |
+
inputs=gr.Image(type="pil"), # Accepts images
|
42 |
+
outputs=gr.Image(type="pil"), # Returns annotated image
|
43 |
+
)
|
44 |
+
|
45 |
+
iface.launch(server_name="0.0.0.0", server_port=7860) # Accessible via LAN/WAN
|