# Step 1: Import libraries from transformers import DetrImageProcessor, DetrForObjectDetection from PIL import Image, ImageDraw import torch import gradio as gr # Step 2: Load model and processor model = DetrForObjectDetection.from_pretrained("hilmantm/detr-traffic-accident-detection") processor = DetrImageProcessor.from_pretrained("hilmantm/detr-traffic-accident-detection") # Step 3: Define the inference logic def detect_traffic_accidents(image): # Preprocess image inputs = processor(images=image, return_tensors="pt") # Run model inference outputs = model(**inputs) # Extract detections target_sizes = torch.tensor([image.size[::-1]]) # Width, height results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] # Annotate image with bounding boxes draw = ImageDraw.Draw(image) for box, score, label in zip(results["boxes"], results["scores"], results["labels"]): if score > 0.9: # Confidence threshold x_min, y_min, x_max, y_max = box draw.rectangle([x_min, y_min, x_max, y_max], outline="red", width=3) draw.text((x_min, y_min), f"{model.config.id2label[label]}: {score:.2f}", fill="red") return image # Step 4: Define the Gradio Interface def api_endpoint(input_image): output_image = detect_traffic_accidents(input_image) return output_image # Step 5: Launch Gradio app iface = gr.Interface( fn=api_endpoint, inputs=gr.Image(type="pil"), # Accepts images outputs=gr.Image(type="pil"), # Returns annotated image ) iface.launch(server_name="0.0.0.0", server_port=7860) # Accessible via LAN/WAN