Spaces:
Runtime error
Runtime error
v0
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
4 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
5 |
+
from PIL import Image, ImageDraw
|
6 |
+
import io
|
7 |
+
import torch
|
8 |
+
|
9 |
+
# Initialize FastAPI app
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
+
# Add CORS middleware to allow communication with external clients
|
13 |
+
app.add_middleware(
|
14 |
+
CORSMiddleware,
|
15 |
+
allow_origins=["*"], # Change this to the specific domain in production
|
16 |
+
allow_methods=["*"],
|
17 |
+
allow_headers=["*"],
|
18 |
+
)
|
19 |
+
|
20 |
+
# Load the model and processor
|
21 |
+
model = DetrForObjectDetection.from_pretrained("hilmantm/detr-traffic-accident-detection")
|
22 |
+
processor = DetrImageProcessor.from_pretrained("hilmantm/detr-traffic-accident-detection")
|
23 |
+
|
24 |
+
def detect_accident(image):
|
25 |
+
"""Runs accident detection on the input image."""
|
26 |
+
inputs = processor(images=image, return_tensors="pt")
|
27 |
+
outputs = model(**inputs)
|
28 |
+
|
29 |
+
# Post-process results
|
30 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
31 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
32 |
+
|
33 |
+
# Draw bounding boxes and labels
|
34 |
+
draw = ImageDraw.Draw(image)
|
35 |
+
for box, label, score in zip(results["boxes"], results["labels"], results["scores"]):
|
36 |
+
x_min, y_min, x_max, y_max = box
|
37 |
+
draw.rectangle((x_min, y_min, x_max, y_max), outline="red", width=3)
|
38 |
+
draw.text((x_min, y_min), f"{label}: {score:.2f}", fill="red")
|
39 |
+
|
40 |
+
return image
|
41 |
+
|
42 |
+
@app.post("/detect_accident")
|
43 |
+
async def process_frame(file: UploadFile = File(...)):
|
44 |
+
"""API endpoint to process an uploaded frame."""
|
45 |
+
try:
|
46 |
+
# Read and preprocess image
|
47 |
+
image = Image.open(io.BytesIO(await file.read()))
|
48 |
+
image = image.resize((256, int(image.height * 256 / image.width))) # Resize while maintaining aspect ratio
|
49 |
+
|
50 |
+
# Detect accidents
|
51 |
+
processed_image = detect_accident(image)
|
52 |
+
|
53 |
+
# Save the processed image into bytes to send back
|
54 |
+
img_byte_arr = io.BytesIO()
|
55 |
+
processed_image.save(img_byte_arr, format="JPEG")
|
56 |
+
img_byte_arr.seek(0)
|
57 |
+
|
58 |
+
return JSONResponse(
|
59 |
+
content={"status": "success", "message": "Frame processed successfully"},
|
60 |
+
media_type="image/jpeg"
|
61 |
+
)
|
62 |
+
except Exception as e:
|
63 |
+
return JSONResponse(content={"status": "error", "message": str(e)}, status_code=500)
|
64 |
+
|
65 |
+
# Run the app
|
66 |
+
if __name__ == "__main__":
|
67 |
+
import uvicorn
|
68 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|