File size: 5,506 Bytes
ba888e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python
import json
import os
import os.path
import sys


def gen_train_facts(data_file_name, truth_dir):
    fact_file_name = data_file_name[data_file_name.find("train_") :]
    fact_file_name = os.path.join(truth_dir, fact_file_name.replace(".json", ".fact"))

    if os.path.exists(fact_file_name):
        fact_in_train = set([])
        triples = json.load(open(fact_file_name))
        for x in triples:
            fact_in_train.add(tuple(x))
        return fact_in_train

    fact_in_train = set([])
    ori_data = json.load(open(data_file_name))
    for data in ori_data:
        vertexSet = data["vertexSet"]
        for label in data["labels"]:
            rel = label["r"]
            for n1 in vertexSet[label["h"]]:
                for n2 in vertexSet[label["t"]]:
                    fact_in_train.add((n1["name"], n2["name"], rel))

    json.dump(list(fact_in_train), open(fact_file_name, "w"))

    return fact_in_train


input_dir = sys.argv[1]
output_dir = sys.argv[2]

submit_dir = os.path.join(input_dir, "res")
truth_dir = os.path.join(input_dir, "ref")

if not os.path.isdir(submit_dir):
    print("%s doesn't exist" % submit_dir)

if os.path.isdir(submit_dir) and os.path.isdir(truth_dir):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    fact_in_train_annotated = gen_train_facts("../data/train_annotated.json", truth_dir)
    fact_in_train_distant = gen_train_facts("../data/train_distant.json", truth_dir)

    output_filename = os.path.join(output_dir, "scores.txt")
    output_file = open(output_filename, "w")

    truth_file = os.path.join(truth_dir, "dev_test.json")
    truth = json.load(open(truth_file))

    std = {}
    tot_evidences = 0
    titleset = set([])

    title2vectexSet = {}

    for x in truth:
        title = x["title"]
        titleset.add(title)

        vertexSet = x["vertexSet"]
        title2vectexSet[title] = vertexSet

        for label in x["labels"]:
            r = label["r"]

            h_idx = label["h"]
            t_idx = label["t"]
            std[(title, r, h_idx, t_idx)] = set(label["evidence"])
            tot_evidences += len(label["evidence"])

    tot_relations = len(std)

    submission_answer_file = os.path.join(submit_dir, "result.json")
    tmp = json.load(open(submission_answer_file))
    tmp.sort(key=lambda x: (x["title"], x["h_idx"], x["t_idx"], x["r"]))
    submission_answer = [tmp[0]]
    for i in range(1, len(tmp)):
        x = tmp[i]
        y = tmp[i - 1]
        if (x["title"], x["h_idx"], x["t_idx"], x["r"]) != (y["title"], y["h_idx"], y["t_idx"], y["r"]):
            submission_answer.append(tmp[i])

    correct_re = 0
    correct_evidence = 0
    pred_evi = 0

    correct_in_train_annotated = 0
    correct_in_train_distant = 0
    titleset2 = set([])
    for x in submission_answer:
        title = x["title"]
        h_idx = x["h_idx"]
        t_idx = x["t_idx"]
        r = x["r"]
        titleset2.add(title)
        if title not in title2vectexSet:
            continue
        vertexSet = title2vectexSet[title]

        if "evidence" in x:
            evi = set(x["evidence"])
        else:
            evi = set([])
        pred_evi += len(evi)

        if (title, r, h_idx, t_idx) in std:
            correct_re += 1
            stdevi = std[(title, r, h_idx, t_idx)]
            correct_evidence += len(stdevi & evi)
            in_train_annotated = in_train_distant = False
            for n1 in vertexSet[h_idx]:
                for n2 in vertexSet[t_idx]:
                    if (n1["name"], n2["name"], r) in fact_in_train_annotated:
                        in_train_annotated = True
                    if (n1["name"], n2["name"], r) in fact_in_train_distant:
                        in_train_distant = True

            if in_train_annotated:
                correct_in_train_annotated += 1
            if in_train_distant:
                correct_in_train_distant += 1

    re_p = 1.0 * correct_re / len(submission_answer)
    re_r = 1.0 * correct_re / tot_relations
    if re_p + re_r == 0:
        re_f1 = 0
    else:
        re_f1 = 2.0 * re_p * re_r / (re_p + re_r)

    evi_p = 1.0 * correct_evidence / pred_evi if pred_evi > 0 else 0
    evi_r = 1.0 * correct_evidence / tot_evidences
    if evi_p + evi_r == 0:
        evi_f1 = 0
    else:
        evi_f1 = 2.0 * evi_p * evi_r / (evi_p + evi_r)

    re_p_ignore_train_annotated = (
        1.0 * (correct_re - correct_in_train_annotated) / (len(submission_answer) - correct_in_train_annotated)
    )
    re_p_ignore_train = (
        1.0 * (correct_re - correct_in_train_distant) / (len(submission_answer) - correct_in_train_distant)
    )

    if re_p_ignore_train_annotated + re_r == 0:
        re_f1_ignore_train_annotated = 0
    else:
        re_f1_ignore_train_annotated = 2.0 * re_p_ignore_train_annotated * re_r / (re_p_ignore_train_annotated + re_r)

    if re_p_ignore_train + re_r == 0:
        re_f1_ignore_train = 0
    else:
        re_f1_ignore_train = 2.0 * re_p_ignore_train * re_r / (re_p_ignore_train + re_r)

    print("RE_F1:", re_f1)
    print("Evi_F1:", evi_f1)
    print("RE_ignore_annotated_F1:", re_f1_ignore_train_annotated)
    print("RE_ignore_distant_F1:", re_f1_ignore_train)

    output_file.write("RE_F1: %f\n" % re_f1)
    output_file.write("Evi_F1: %f\n" % evi_f1)

    output_file.write("RE_ignore_annotated_F1: %f\n" % re_f1_ignore_train_annotated)
    output_file.write("RE_ignore_distant_F1: %f\n" % re_f1_ignore_train)

    output_file.close()