Spaces:
Sleeping
Sleeping
File size: 1,235 Bytes
a84f7fb 871f642 a84f7fb 871f642 a84f7fb 871f642 a84f7fb 871f642 a84f7fb 871f642 a84f7fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import torch
import cv2
import gradio as gr
from pathlib import Path
# Load the YOLOv5 model
MODEL_PATH = "best.pt" # Path to your custom model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = torch.hub.load('ultralytics/yolov5', 'custom', path=MODEL_PATH, force_reload=True).to(device)
# Define the prediction function
def predict(image):
# Convert the input image (numpy) to a compatible format
img_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
results = model(img_bgr) # Run inference
# Render results
annotated_image = results.render()[0]
annotated_image_rgb = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
return annotated_image_rgb
# Gradio Interface
title = "Custom YOLOv5 Model Deployment"
description = "Upload an image to get predictions using a custom YOLOv5 model trained with your dataset."
interface = gr.Interface(
fn=predict, # Prediction function
inputs=gr.Image(type="numpy", label="Upload Image"),
outputs=gr.Image(type="numpy", label="Detected Objects"),
title=title,
description=description,
live=True # Enable live processing
)
# Launch the Gradio app
if __name__ == "__main__":
interface.launch()
|