File size: 7,428 Bytes
5aad5c7
46007cf
 
 
 
dd5e693
 
46007cf
dd5e693
46007cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import cv2
import numpy as np
from PIL import Image
import mediapipe as mp
import time
import gradio as gr

DOMINANT_HAND = "Right"

# width, height = 1280, 720
width_, height_, = 256, 144

drawing_flag = False
sleepy_time = time.time()

output_frames = []


def find_hands(brain, img):
    img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # opencv image is in BGR form but mp is trained with RGB
    results = brain.process(
        img_rgb)  # process finds the hands and outputs classification and 21 landmarks for each hand
    all_hands = []  # initializing array to hold the dictionary for the hands
    h, w, _ = img.shape  # get height and width of image for scaling
    if results.multi_hand_landmarks:
        for hand_type, hand_lms in zip(results.multi_handedness,
                                       results.multi_hand_landmarks):  # elegant solution for mp list object traversal
            hand = {}  # initializing dict for each hand
            lm_list = []  # landmarks array for all 21 point of the hand
            for lm in hand_lms.landmark:
                px, py, pz = int(lm.x * w), int(lm.y * h), int(
                    lm.z * w)  # scaling landmark points to image size for frame coordinates
                lm_list.append([px, py, pz])

            hand["lm_list"] = lm_list  # add "lm_list" key for all landmark points of the hand
            hand["type"] = hand_type.classification[0].label  # adds the label (left/right) for the hand
            all_hands.append(hand)  # appends the dict
    return all_hands


def is_drawing(index, thumb):  # proximity function with arbitrary threshold
    npindex = np.array((index[0], index[1]))
    npthumb = np.array((thumb[0], thumb[1]))
    if np.linalg.norm(npindex - npthumb) < 30:
        return True
    else:
        return False


def save(landmarks):  # brute force finger orientation checking
    if landmarks[8][1] < landmarks[6][1]:
        if landmarks[12][1] < landmarks[10][1]:
            if landmarks[16][1] < landmarks[14][1]:
                if landmarks[20][1] < landmarks[18][1]:
                    return True
    else:
        return False


def clear(landmarks):  # brute force finger orientation checking
    if landmarks[4][1] < landmarks[3][1] < landmarks[2][1] < landmarks[8][1]:
        return True
    else:
        return False


def show(video): # main
    cam = cv2.VideoCapture(video)  # get the video file from path
    width = cam.get(cv2.CAP_PROP_FRAME_WIDTH)
    height = cam.get(cv2.CAP_PROP_FRAME_HEIGHT)

    detector = mp.solutions.hands.Hands(min_detection_confidence=0.8)  # initialize detector
    # paper = np.zeros((width, height, 4), np.uint8)
    paper = np.zeros((int(height), int(width), 3), dtype=np.uint8)  # create blank page
    paper.fill(255)

    past_holder = ()  # hold previous index coordinates
    palette = cv2.imread('palette.jpg')

    page_num = 0  # iterating for saving (not a viable function for gradio)

    color = (0, 0, 0)

    global sleepy_time  # get sleep time for multiple gestures

    # runny = 1
    while cam.isOpened():
        # runny -= 1
        x, rgb_image = cam.read()
        rgb_image_f = cv2.flip(np.asanyarray(rgb_image), 1)  # mirrored video

        hands = find_hands(detector, rgb_image_f)

        if x:  # return flag for cv2
            try:  # for error handling
                if hands:
                    hand1 = hands[0] if hands[0]["type"] == DOMINANT_HAND else hands[1]
                    lm_list1 = hand1["lm_list"]  # List of 21 Landmarks
                    handedness = hand1["type"]

                    if handedness == DOMINANT_HAND:
                        idx_coords = lm_list1[8][0], lm_list1[8][1]  # 0 is width (bigger)
                        # print(idx_coords)
                        cv2.circle(rgb_image_f, idx_coords, 5, color, cv2.FILLED)

                        if idx_coords[1] < 72: # brute force but should be extremely marginally faster lol
                            if idx_coords[0] < 142:  # red
                                color = (0, 0, 255)
                            if 142 < idx_coords[0] < 285:  # orange
                                color = (0, 115, 255)
                            if 285 < idx_coords[0] < 426:  # yellow
                                color = (0, 229, 255)
                            if 426 < idx_coords[0] < 569:  # green
                                color = (0, 195, 88)
                            if 569 < idx_coords[0] < 711:  # blue
                                color = (195, 85, 0)
                            if 711 < idx_coords[0] < 853:  # indigo
                                color = (195, 0, 68)
                            if 853 < idx_coords[0] < 996:  # violet
                                color = (195, 0, 143)
                            if 996 < idx_coords[0] < 1137:  # black
                                color = (0, 0, 0)
                            if 1137 < idx_coords[0]:  # white / eraser
                                color = (255, 255, 255)

                        if len(past_holder) and drawing_flag: # start drawing
                            cv2.line(paper, past_holder, idx_coords, color, 5)
                            cv2.line(rgb_image_f, past_holder, idx_coords, color, 5)
                            # paper[idx_coords[0]][idx_coords[1]][0] = 255
                            # paper[idx_coords[0]][idx_coords[1]][3] = 255
                            cv2.circle(rgb_image_f, idx_coords, 5, color, cv2.FILLED)

                        if save(lm_list1) and time.time() - sleepy_time > 3: # save / output
                            paper[0:height_, w - width_: w] = 255
                            paper = cv2.cvtColor(paper, cv2.COLOR_BGR2RGB)
                            im = Image.fromarray(paper)
                            im.save("paper%s.png" % page_num)
                            print("saved")
                            sleepy_time = time.time()
                            paper = cv2.cvtColor(paper, cv2.COLOR_RGB2BGR)
                            page_num += 1
                            return paper

                        if clear(lm_list1) and time.time() - sleepy_time > 3: # reset paper
                            paper = np.zeros((height, width, 3), dtype=np.uint8)
                            paper.fill(255)
                            print("page cleared")
                            sleepy_time = time.time()

                        past_holder = idx_coords

                if is_drawing(idx_coords, lm_list1[4]):  # 4 is thumb
                    drawing_flag = True
                else:
                    drawing_flag = False

            except:
                pass

            finally:
                rgb_image_f[0:72, ] = palette
                presenter = cv2.resize(rgb_image_f, (width_, height_))
                h, w, _ = rgb_image_f.shape
                paper[0:height_, w - width_: w] = presenter

                # output_frames.append(paper)

                # cv2.imshow("Image", rgb_image_f)
                # cv2.imshow("paper", paper)
                # key = cv2.waitKey(1)
                # if key & 0xFF == ord('q') or key == 27:  # Press esc or 'q' to close the image window
                #     break

        else:
            break


iface = gr.Interface(fn=show, inputs=gr.inputs.Video(source="webcam", type="mp4"), outputs='image')

iface.launch(share=True)